

CHARACTERIZING MULTI-DRUG TREATMENTS ON METABOLIC NETWORKS

Claudio Altafini

Linköping University, Sweden SISSA, Trieste

First and foremost

The real authors of this work:

Giuseppe Facchetti SISSA, Trieste now: ICTP, Trieste

Mattia Zampieri SISSA, Trieste now: ETH, Zurich

Outline

- Problem formulation: using drugs to block a desired reaction
- When a drug directly targeting is missing: multiple drugs + synergisms
- Methodology behind: bilevel optimization
- Uses of drug synergisms:
 - drug repurposing
 - reduce side effect
- Applications
 - systematic screening for synergisms in metabolic networks
 - human metabolic diseases
 - contrasting two networks: human + cancer cells
- Drug effect on enzyme: from ON/OFF to partial action

Metabolic Networks

Escherichia Coli: 2383 reactions and 1668 metabolites

Flux Balance Analysis

Flux Balance Analysis

linear constraints H = convex polytope of admissible fluxes

 $\begin{array}{l} \mathsf{S} \ \mathsf{v} = \mathsf{0} \\ 0 \leq \mathsf{v}_i \leq \mathsf{U}_i \end{array}$

optimal flux: LP maximization

 $\begin{aligned} \max_{\mathbf{v}} \mathbf{F}(\mathbf{v}) &= \mathbf{b}^T \mathbf{v} \\ \mathbf{S} \mathbf{v} &= \mathbf{0} \\ 0 &\leq \mathbf{v}_i \leq \mathbf{U}_i \end{aligned}$

perturbed networks: MOMA = Minimization of Metabolic Adjustement

MOMA

D. Segre` et. al. PNAS 2002

Our Problem

TASK: inhibiting an "objective" reaction, while maintaining viability

Our Problem

TASK: inhibiting an "objective" reaction, while maintaining viability AVAILABLE RESOURCES: drugs targeting enzymes

Linköping University Looking for drug synergisms

Inhibition = set of reactions affected by the drug

Linköping University Looking for drug synergisms

Inhibition = set of reactions affected by the drug

Looking for drug synergisms

Synergism = set of affected reactions which are "more" than the linear superposition of the effects

Linköping University Drug synergisms in FBA

None of the 3 drugs (\bowtie) inhibits the objective reaction (v_{10})

First solution: $v_{10} = 0$, big side effect

starting from "wild type"

$$\max_{\mathbf{v}} \mathbf{F}(\mathbf{v}) = \mathbf{b}^T \mathbf{v} \\ \mathbf{S} \mathbf{v} = \mathbf{0}$$

Linköping University

Drug action and FBA

drugs: additional constraints \rightarrow H reduces to H(D)

Linköping University

Drug action and FBA

drugs: additional constraints \rightarrow H reduces to H(D)

drugs: additional constraints \rightarrow H reduces to H(D)

problem is feasible when $v_{obj} = 0$

when problem is feasible, optimum is in MOMA sense w.r.t. \vee^{*}

Linköping University

Bilevel optimization

$$\begin{split} \min_{\mathsf{d}\in\mathsf{D}} & \|\mathsf{v}(\mathsf{d}) - \mathsf{v}^*\| \\ & \mathsf{S} \; \mathsf{v} = 0 \\ & 0 \leq \mathsf{v}_i \leq \mathsf{U}_i(1 - \mathsf{d}_j) \\ & \max_{\mathsf{v}\in\mathsf{H}(\mathsf{D})} \mathsf{v}_{\mathsf{obj}} = 0 \end{split}$$

OUTER PROBLEM:

Search for the combination of drugs which minimizes the side effect given that max $(v_{obj}) = 0$ of the inner problem

INNER PROBLEM:

For a fixed set of drugs (provided by the outer problem) it maximizes the v_{obj} flux

Key point: strong duality theory is applicable

➔ inner problem can be reformulated exactly by appending extra constraints to the outer problem

Avoid exhausitve solution (unfeasible: 40 drugs → a trillion combinations)

Bilevel optimization for metabolic networks: OptKnock (Burgard et. al. 2003), OptORF (Kim et. al., 2010)

Multi-drug problems

Linköping University

Linköping University DrugBank / Metabolic networks

Metabolic networks and drugs for various organisms

Organism	metabolites	reactions	compart.	drugs
Helicobacter pylori	422	600	2	76
Staphylococcus aureus	455	665	2	76
Methanosarcina barkeri	454	619	2	96
Shewanella oneidensis	528	799	2	124
Mycobacterium tuberculosis	614	964	2	109
Saccaromyces cerevisiae	547	931	3	124
Escherichia coli	1337	2221	3	129
Salmonella typhimurium	1497	2564	3	123

DrugBank for human metabolism

6708	Whole database
1570	FDA approved
473	Human metabolic target
267	Inhibitory effect
85	Drugs

Results for *E.coli*

screening over all metabolic reactions

Linköping University Results for 9 organisms

approx. 10% of new drug repurposing through synergistic actions

Linköping University Human metabolic network

Human metabolic network (Duarte et al. PNAS 2007)

- 2469 reactions
- 1579 metabolites
- 83 pathways
- 85 drugs (or groups of drugs with same targets)

Side effect

- no FBA or similar, hence v* is not available
- side effect = # of reactions that cannot take place because of the drugs

Screening all v_{obj}: only 32 synergisms exist

Clustering of synergisms

clustering is based on Hamming distance of side effects

Clustering of synergisms

Linköping University All drug synergisms (human)

In red: experimental validations. (combinations of up to 4 drugs: 50 milions)

Drugs	Side eff.	Syn.	ratio	Class
Rosiglitazone (#7) - Cerulenin (#62)	298.9	52	17.3%	Α
Rosiglitazone (#7) - Orlistat (#65) -	312.8	52	16.6%	Α
Rosiglitazone (#7) - Quinacrine (#36) - Cerulenin (#62) - Tyloxapol (#85)	363.8	91	25.0%	Α
Rosiglitazone (#7) - Quinacrine (#36) - Orlistat (#65) - Tyloxapol (#85)	377.7	91	24.0%	Α
Rosiglitazone (#7) - Indomethacin (#22) - Cerulenin (#62) - Tyloxapol (#85)	390.6	91	23.2%	Α
Rosiglitazone (#7) - Diclofenac (#35) - Cerulenin (#62) - Tyloxapol (#85)	397.5	91	22.8%	Α
Rosiglitazone (#7) - Indomethacin (#22) - Orlistat (#65) - Tyloxapol (#85)	404.5	91	22.4%	Α
Rosiglitazone (#7) - Diclofenac (#35) - Orlistat (#65) - Tyloxapol (#85)	411.4	91	22.1%	Α
Indomethacin (#22) - Fomepizole (#75)	84.7	1	1.1%	В
Naftifine (#43) - Acetylsalicylic acid (#55)	116.0	6	5.1%	С
Acetylsalicylic acid (#55) - Tioconazole (#60)	116.0	6	5.1%	C
Simvastatin/Pravastatin (#4) - Acetylsalicylic acid (#55)	123.9	6	4.8%	С
Rosiglitazone (#7) - Tioconazole (#60)	280.9	6	2.1%	С
Rosiglitazone (#7) - Naftifine (#43)	280.9	6	2.1%	С
Simvastatin/Pravastatin (#4) - Rosiglitazone (#7)	288.8	6	2.0%	С
Carbidopa (#6) - Droxidopa (#24)	93.1	1	1.0%	D
Droxidopa (#24) - Selegiline (#45)	96.1	1	1.0%	D
Droxidopa (#24) - Minaprine (#49)	152.4	1	0.6%	D
Droxidopa (#24) - Zonisamide (#54)	289.7	1	0.3%	D
Mycophenolic acid (#42) - Mercaptopurine (#58)	11.0	5	45.4%	E
Ribavirin (#51) - Mercaptopurine (#58)	23.9	5	20.9%	E
Udenafil (#10) - Mycophenolic acid (#42) - Mercaptopurine (#58) -	18.0	7	38.8%	E
Mycophenolic acid (#42) - Dipyridamole (#57) - Mercaptopurine (#58)	22.0	7	31.8%	E
Udenafil (#10) - Ribavirin (#51) - Mercaptopurine (#58)	30.9	7	22.6%	E
Ribavirin (#51) - Dipyridamole (#57) - Mercaptopurine (#58)	34.9	7	20,0%	E
Theophylline (#18) - Mycophenolic acid (#42) - Mercaptopurine (#58)	41.7	7	16.7%	E
Mycophenolic acid (#42) - Pentoxifylline (#50) - Mercaptopurine (#58)	53.8	7	13.0%	E
Theophylline (#18) - Ribavirin (#51) - Mercaptopurine (#58)	54.6	6	10.9%	E
Pentoxifylline (#50) - Ribavirin (#51) - Mercaptopurine (#58)	66.7	6	8.9%	E
Pentaxifylline (#50) - Arsenic trioxide (#72)	118.2	17	14.3%	F
Cladribirne (#16) - Pentoxifylline (#50)	118.2	17	14.3%	F
Gemcitabine (#30) - Pentoxifylline (#50)		15	9.5%	F

Linköping University Human vs cancer metabolism

Cancer metabolic network (Folger et al. Mol. Sys. Bio. 2011)

Human metabolic network (generic cell)

Linköping University Human vs cancer metabolism

	Human	Cancer
reactions	2469	940
metabolites	1587	654
drugs	85	55

Human vs. cancer metabolic network: a two-network problem

- same enzymes
- different topology
- objective function: tumoral cell biomass
- side effect: # of inhibited reactions on healthy human cells

TASK: use drugs to suppress tumoral growth while having the least side effect on the healthy cells

Linköping University Human vs cancer metabolism

drugs (mostly single) suppressing tumoral growth

Solution nr.	Drugs	Side effect $\sigma(h)$
1	Floxuridine (#20)	1
2	Mycophenolic acid (#42)	4
3	Trimethoprim (#29)	5
4	Methotrexate (#11)	5
5	Atovaquone (#69)	6
6	Tyloxapol (#85)	6
7	Ezetimibe (#56)	12
8	Pemetrexed (#41)	15
9	Ribavirin (#51)	17
10	Quinacrine (#36)	22
11	Myo-Inositol (#82)	29
12	Tioconazole (#60)	34
13	Naftifine (#43)	34
14	Simvastatin (#4)	42
15	Leflunomide (#66)	42
16	Auranofin (#59) - Fomepizole (#75)	47
17	Indomethacin (#22)	48
18	Diclofenac (#35)	55
19	Hydroxyurea (#16)	56
20	Arsenic trioxide (#72)	56
21	Gemcitabine (#30)	99

in red: experimentally validated antitumoral drugs

Human vs cancer metabolism

Metabolites no longer available for biomass

Counting

screening over all reaction as (hypotetical) additional target: 31 new solutions

Linköping University

Assuming we can have an cholesterol dTMP hypothetical new drug. dCMP What should it be its target phosphatidylinositol CMP in order to have an UMP antitumoral multiple-drug dGMP treatement? Cholesterol dAMP lysophosphatidylcholine triacylglycerol sphingomyelin Examples of new combinations: phosphatidic diacylglycerol Mimosine + cis-octadecenoic acids monoacylglycerol [Mahfouz, 1981] GMP Cerulenine (or Orlistat) + 5,6,7,8phosphatidylserine tetrahydro-N⁵,N¹⁰-carbonylfolic acid phosphatidylethanolamine Phosphatidylcholine [Temple, 1982] ATP Sulfasalazine + perfluorodecanoic acid AMP (or spiropentaneacetic acid) L-Tyrosine with additional target [Borger 1993, Tserng 1991]. glycogen, Glycine without additional target L-Arginine 15 0 5 10 20

Linköping University From ON/OFF to partial inhibition

Pros:

- prediction of synergisms
- possibility of including experimental drugs
- contrasting two or more networks
- computational efficiency
- applications
 - drug repurposing
 - strategy against drug resistance
 - antifungal/antibacterial effect
 - non-lethal therapies for commensal bacteria

Cons:

- predicted drug synergisms have restricted variability
- human metabolic network is not tissue-specific
- ON/OFF modeling of drug inhibition

From ON/OFF to partial inhibition

- 1. Inhibition of an enzyme induced by a drug can be partial
- 2. Desired inhibition on v_{obi} can be partial
- 3. Partial activation of v_{obj} can be sought

Strong duality theorem of LP

$$\max\left\{\mathbf{b}^{T}\mathbf{v} \text{ s.t. } \mathbf{A} \mathbf{v} \leq \mathbf{c}, \ \mathbf{v} \geq 0\right\} = \min\left\{\mathbf{c}^{T}\mu \text{ s.t. } \mathbf{A}^{T}\mu \geq \mathbf{b}, \ \mu \geq 0\right\}$$

When this holds: the set defined by

$$\begin{cases} \mathsf{A}\mathsf{v} \le \mathsf{c}, \ \mathsf{v} \ge 0\\ \mathsf{A}^T \mu \ge \mathsf{b}, \ \mu \ge 0\\ \mathsf{b}^T \mathsf{v} = \mathsf{c}^T \mu \end{cases}$$

contains only the optimal solution of the inner problem

For our inner problem:

A
$$v \leq c \iff \begin{cases} \mathsf{S} \ v = 0 \\ 0 \leq v_i \leq \mathsf{U}_i(1 - \mathsf{d}_j) & \mathsf{d}_j \in \mathsf{D} \\ \dots \end{cases}$$

where $d_j \in [0, 1]$ is a variable of the outer problem which describe the inhibition by the drug *j*

→ d is part of vector c i.e., (for some Q and p) c = Q d + p

➔ from the strong duality theorem

$$\mathsf{b}^T\mathsf{v} = \mu^T\mathsf{Q}\;\mathsf{d}\;+\mu^T\mathsf{p}$$

→ no longer linear in the variables!

ON/OFF inhibition:

When d is a binary variable: $d_j \in \{0, 1\}$

→ exact linearization is possible $z_{ij} = \mu_i d_j$ $0 \leq z_{ij} \leq M_i d_j$ $\mu_i - M_i(1 - d_j) \leq z_{ij} \leq \mu_i$

(M_i is the upper bound on the dual variable μ_i)

More fine-graded inhibition:

Performing an equipartition of [0, 1] with P+1 binary variables

$$\mathsf{d}_{j} = \frac{\mathsf{x}_{j,0}}{2^{P}} + \sum_{n=1}^{P} \frac{\mathsf{x}_{j,n}}{2^{n}}$$

→ exact linearization is still possible

Effect of partial inhibition on microorganism: MOMA

 Inner problem: duality requires a linear cost function: MOMA with L¹ norm

$$\min_{\mathsf{v}\in\mathsf{H}(\mathsf{D})}\sum_i |\mathsf{v}_i-\mathsf{v}_i^*|$$

• Outer problem: side effect (still L¹ MOMA)

$$\min_{\mathsf{d}\in\mathsf{D}}\sum_{i}|\mathsf{v}_{i}(d)-\mathsf{v}_{i}^{*}|$$

• Therapeutic requirement: (partial inibition/activation of v_{obj})

$$\begin{aligned} \mathbf{v}_{\text{obj}} &< \tau \; \mathbf{v}_{\text{obj}}^* & \mathbf{v}_{\text{obj}} > \tau \; \mathbf{v}_{\text{obj}}^* \\ \tau &< 1 & \tau > 1 \end{aligned}$$

Linköping University Partial inhibition: evaluation

Comparison of performances

Screening over all *E.coli* reactions

Linköping University Partial inhibition: evaluation

Conclusions

- Drug synergisms:
 - can be determined systematically
 - no need of exhaustive search
- Bilevel optimization:
 - usually NP-hard MILP problem
 - properly addressing the bilinear terms it can still be used
 - also realistic representations of drug action are feasible
- Applications:
 - repurposing of approved drugs ("cheap")
 - clues on multi-drug effects / potential solutions
 - partial action: all epistatic effects can be sought

THANK YOU FOR YOUR ATTENTION

Linköping University Human metabolic drugs

