OPTIMALITY AND OPTIMIZING DURING EXPERIMENTAL EVOLUTION

CHRISTOPHER MARX

BIOLOGICAL SCIENCES INSTITUTE FOR BIOINFORMATICS & EVOLUTIONARY STUDIES UNIVERSITY OF IDAHO CMARX@UIDAHO.EDU

Cases of known adaptation

Ancestral, primitive behavior

Refined, optimized behavior

Replicate examples...

Cases of known adaptation

Ancestral, primitive behavior

Refined, optimized behavior

Other transformations possible

Cellular economy at many levels

- Selection upon synonymous sites
- Selection to reduce the accessory genome
- Selection can occur with surprisingly little substrate specialization

- Optimizing economy of central metabolism
- Optimizing the use of foreign metabolic pathways
 - Large-scale transcriptome changes scaling with growth rate
 - Optimizing expression of enzymes of a foreign formaldehyde oxidation pathway

Selection upon synonymous sites

Table 1. Experimental Strains with Synonymous fae Alleles.

	Codon Distribution			# Supanymour	5' sequence
Strain	% Frequent	% Rare	Residues with Rare Codons	* Synonymous Mutations	M <u>AKITKVQV</u> GE <u>A</u> LV
WT	71.9	8	Wild type	-	ATG <mark>GCAAAA</mark> ATCACCAAGGTTCAGGTCGGCGAGGCCCTCGTC
AF	100	0	None	46	ATGCGGGGGG
AC	89	11	Active	52	ATG <mark>CGGGGG</mark>
RN	49.4	49.4	Random	92	ATG <mark>A</mark> G <mark>AA</mark> <mark>AT.G</mark> G
VA	49.4	50.6	Variable	102	ATG <mark>CGGGG</mark> G
со	49.4	50.6	Conserved	94	ATG <mark>AAAAA</mark> <mark>A</mark> GG
AR	0	98.8	All	150	ATG

Synthesized synonymous versions of key enzyme

Number of hexamers with high binding affinity to anti-SD

Main cause: anti-SDs

Massive fitness effects; due to low expression

(Agashe et al., 2013. Molecular Biology & Evolution; Agashe et al., in prep)

Selection upon synonymous sites

Table 1. Experimental Strains with Synonymous fae Alleles.

(Agashe et al., 2013. *Molecular Biology & Evolution*; Agashe et al., in prep)

Selection to remove up to 10% genome

 Parallel deletions of >600 kb of megaplasmid in 1500 gen. adaptation by *Methylobacterium*

- Benefit due to genes removed, not just DNA
- Caused tradeoffs in other environments

(Lee et al., 2009. Evolution; Lee and Marx, 2012. PLoS Genetics)

Longest evolution: Lenski long-term lines

 On February 24th, 1988, Rich Lenski started 12 populations of *E. coli* B in minimal glucose medium

• USA popular culture in February, 1988:

#1 album: Faith, George Michael

#1 song: "Seasons Change" by Exposé

Biolog ≠ growth

(Delaney et al., 2013. J. Lab. Automation; Delaney et al., 2013. PLoS One; Leiby and Marx, 2014. PLoS Biology)

Introduction

Introduction

10/34

12/34

Metabolism: connect phenotype to fitness at two scales

Will Harcombe Will Harcombe Will Harcombe

- No previous test if internal fluxes evolve to be FBA optimal
- Can compare predictions to measured fluxes in three ways:

- What should be optimized? Normal = BM/S = C yield
- What is selected for in batch culture? Mainly growth rate

(Harcombe et al., 2013. PLoS Computational Biology)

Do fluxes evolve to FBA-predicted optimum?

1. Evolve to FBA optimum?

Do fluxes evolve to FBA-predicted optimum?

⁽Harcombe et al., 2013. PLoS Computational Biology)

Predictability depends on distance to optimum

(Harcombe et al., 2013. *PLoS Computational Biology*)

Model system: C₁ in *Methylobacterium*

- M. extorquens is a plant epiphyte
- Model for C₁ metabolism (>50 yrs)

Leaf print on methanol plate. Plants release methanol during cell wall growth...

(Ward and Marx, unpublished)

Novel catalysts & regulators

Methanol-based biotechnology

Model system: C₁ in *Methylobacterium*

- *M. extorquens* is a plant epiphyte
- Model for C₁ metabolism (>50 yrs)

Leaf print on methanol plate. Plants release methanol during cell wall growth...

(Ward and Marx, unpublished)

C₁ and HGT: new model for evolution

- C₁ genes transferred between bacteria; maybe from archaea
- How are new functions incorporated?
- Discovered one new gene (DmrA) that was Methylobacterium-specific innovation

(Marx et al., 2003a, 2003c. J. Bacteriology; Chistoserdova et al., 2004. Mol. Biol. Evol.; Kalyuzhnaya et al., 2005. J. Bacteriology)

2. Optimizing gene expression

Proteobacter

DfrA_Mex Dfr Mlo

Dfr Sty(p)

Innovative combos not always initially fit...

C_1 and HGT: new model for evolution

- Replaced existing formaldehyde oxidation pathway
 - Foreign GSH-dependent pathway from Paracoccus denitrificans
 - Single transcript, on plasmid, strong promoter
- Recovered growth, but 3x slower

(Marx et al., 2003a, 2003b. J. Bacteriology; Chistoserdova et al., 2004. Mol. Biol. Evol.; Kalyuzhnaya et al., 2005. J. Bacteriology)

C1 and HGT: new model for evolution

An analogous scenario:

C_1 and HGT: new model for evolution

- Replaced existing formaldehyde oxidation pathway
 - Foreign GSH-dependent pathway from Paracoccus denitrificans
 - Single transcript, on plasmid, strong promoter
- Recovered growth, but 3x slower

 Hypothesis, v.1: Biggest benefit mutations directly involved with C₁ replacement

 Hypothesis, v.2: Metabolic model of C₁ catalysis can predict targets/interactions

(Marx et al., 2003a, 2003b. J. Bacteriology; Chistoserdova et al., 2004. Mol. Biol. Evol.; Kalyuzhnaya et al., 2005. J. Bacteriology)

Evolution with engineered HGT

Engineered ancestor

Evolved in methanol 900 gen. N_e ≈ 10⁸

- Dramatic (>2X) but varied improvement
- Almost entirely specific to methanol
- What changed?

(Chou et al., 2011. Science; Lee and Marx, 2013. Genetics)

2. Optimizing gene expression

Beneficial mutations outside pathway

- Most mutations in or directly related to new C₁ pathway
- Uncovered general pattern of diminishing returns that decelerates adaptation
- Could predict epistasis at rough level
- Broad physiological disturbance and recovery (global mRNA; NAD(P)H levels)
- Uncovered order and dynamics of alleles

(Chou et al., 2011. Science; Chubiz et al., 2012. PLoS One; Lee and Marx, 2013. Genetics; Carroll and Marx, 2013. PLoS Genetics)

2. Optimizing gene expression

Beneficial mutations outside pathway

(Chou et al., 2011. Science; Chubiz et al., 2012. PLoS One; Lee and Marx, 2013. Genetics; Carroll and Marx, 2013. PLoS Genetics)

2. Optimizing gene expression

Optimize (benefits-costs) for pathway

- Need enzymes for catalysis, but they are costly to make.
- What is the optimal amount across a pathway?
- How do populations evolve toward this?
- How well do expression-altering mutations interact?
- Predict this based upon mapping phenotypes to fitness?

David Chou

Beneficial mut. affecting pathway exp.

Mutations of many types in different populations;
25-45% benefit; affect expression differently

(Chou and Marx, 2012. Cell Reports)

Expression per copy vs. copy#

- Distinct, independent mechanisms to reduce expression of the GSH pathway enzymes
- But no promoter mutations?...

(Chou and Marx, 2012. Cell Reports)

Independent effects upon expression

- Two classes should **Observed Expression (mU)** interact independently:
 - $E_{AB} = E_A \times E_B$
 - Yes
- Indep. upon fitness?
 - No.

(Chou et al., PLoS Genetics, 2014)

Why antagonism and sign epistasis?

- Caused by tension between benefits and costs?
 - Metabolic Control Analysis (MCA)

(Chou et al., PLoS Genetics, 2014)

Nigel Delaney

Map expression to fitness via model

W = Flux above threshold - enzyme costs $W = (v_{max} \times E_1 / (E_1 + E_{\frac{1}{2}max}) - v_T) - a \times E_1 - b \times E_2$

- ANC, single mutants, inducible promoter constructs (27 data points) to fit parameters
 - Try to predict 17 mutational combinations

(Chou and Marx, 2012. Cell Reports; Chou et al., PLoS Genetics, 2014)

Model predicts mutational combos

Mechanistic model works quite well

(Chou et al., PLoS Genetics, 2014)

1.0

Predicted Fitness

1.4

0.2

0.6

Interpret adaptation in light of model

Interpret interactions in light of model

- A3, B5 same benefit (~0.45), but B5 has worse epistasis
- B5 on steep edge of peak...
- Combining expressionchanging mutations may not speed adaptation

(Chou et al., PLoS Genetics, 2014)

Interpret interactions in light of model

(Chou et al., PLoS Genetics, 2014)

Acknowledgements

Collaborators

- Daniel Segrè (Boston U.)
- Nate Cady (U. Albany)
- Colleen Hansel (WHOI)
- Trent Northern (LBNL)
- Victoria Orphan (CalTech)
- Claus Wilke, Jeff Barrick (UT Austin)
- Josh Plotkin (U. Penn), Jeremy Draghi (UBC)
- Yousif Shamoo (Rice U.)
- Marty Ytreberg (U. Idaho)
- Stéphane Vuilleumier, Françoise Bringel (U. Strasbourg)
- Owen Leiser, Paul Keim (Northern Arizona U.)
- Zachary Blount, Rich Lenski (Michigan State U.)
- Susi Remold (U. Louisville)
- Ben Kerr (U. Washington)
- Dan Davidi, Ron Milo (Weizmann)
- Mike Springer, Ann Pearson (Harvard U.)

Funding

- NIH (R01 GM078209)
- NSF (EAR-1024723)
- NSF (DEB-0845893, CAREER Award)
- NSF (IOB-0612591)
- DOE (DE-SC0006731)
- DOE (PI: Segrè, DE-SC0004962)
- DoD (PI: Wilke, 61789-MA-MUR)
- BEACON (PI: Barrick)
- William H. Milton Fund
- Clark/Cooke Fund

View from our living room