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Cases of known adaptation 

Ancestral, primitive behavior Refined, optimized behavior 

Replicate examples... 
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Cases of known adaptation 

Ancestral, primitive behavior Refined, optimized behavior 

Other transformations possible 
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Cellular economy at many levels 
• Selection upon synonymous sites 
• Selection to reduce the accessory genome 

• Selection can occur with surprisingly little substrate 
specialization 

• Optimizing economy of central metabolism 

• Optimizing the use of foreign metabolic pathways 
•  Large-scale transcriptome changes scaling with growth rate 

•  Optimizing expression of enzymes of a foreign formaldehyde 
oxidation pathway 
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Selection upon synonymous sites 

(Agashe et al., 2013. Molecular Biology & Evolution; Agashe et al., in prep) 

•  Synthesized synonymous versions of key enzyme  

•  Massive fitness effects; due to low expression 

•  Main cause: anti-SDs 
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Selection upon synonymous sites 

(Agashe et al., 2013. Molecular Biology & Evolution; Agashe et al., in prep) 

•  Synthesized synonymous versions of key enzyme  

•  Massive fitness effects; due to low expression 

•  Main cause: anti-SDs zzzzzz ussssssz auzed synonymous versions of key enzyme  • Main ca

Subsequent adaptation: 
•  Single mutations recover WT growth 
•  Sometimes promoter; sometimes coding 
•  5’ end preventing anti-SDs 
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Selection to remove up to 10% genome 

(Lee et al., 2009. Evolution; Lee and Marx, 2012. PLoS Genetics) 

•  Parallel deletions of >600 kb of 
megaplasmid in 1500 gen. adaptation 
by Methylobacterium 

•  Benefit due to genes 
removed, not just DNA 

•  Caused tradeoffs in other 
environments 



>55,000 generations!!! 

(~1 Mya for humans) 

•  On February 24th, 1988, Rich Lenski started 12 
populations of E. coli B in minimal glucose medium 

•  USA popular culture in February, 1988: 

#1 song: “Seasons 
Change” by Exposé 

#1 album: Faith, 
George Michael 

Longest evolution: Lenski long-term lines 

1. Evolve to FBA optimum? 8/34 
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Little specialization over 50,000 gen. 

(Delaney et al., 2013. J. Lab. Automation; Delaney et al., 2013. PLoS One; Leiby and Marx, 2014. PLoS Biology) 

• Biolog ≠ growth 

•  Automated, robotic growth system 
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Little specialization over 50,000 gen. 

(Leiby and Marx, 2014. PLoS Biology) 

•  Correlated gains common 
•  Mutators lose more by 50K 
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Little specialization over 50,000 gen. 

(Leiby and Marx, 2014. PLoS Biology) 

•  Correlated gains common 
•  Mutators lose more by 50K 

Substrates experiencing decline not 
correlated with similarity to glucose 
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Little specialization over 50,000 gen. 

(Leiby and Marx, 2014. PLoS Biology) 

•  Correlated gains common 
•  Mutators lose more by 50K 

mmmmmmmmmmmoooooonnnnnn

Losses in mutators rescued by 
temperature: destabilizing proteins? 
 
 
 
 
 
 



“Changes to which parts would most 
optimize fitness?”  

•  Kinetic model of chemical species 
through time (Michaelis-Menten) 

•  Need to know relevant parameters 
•  Sensitivity of flux to parameter changes 

(‘control’ coefficient, ci) 
•  Most enzymes exert very little control on 

flux 
•  Assumption: flux α fitness 

Fi
tn

es
s 

Adaptive landscape: 

Metabolic control (MCA) Flux balance analysis (FBA) 
“What is the optimal flux phenotype?” 

•  Describes network topology via a 
complete stoichiometric matrix 

•  Defines set of all possible balanced 
steady-states (w/in constraints) 

•  Choose flux state that is “optimal” 

•  Key assumption: past selection to 
become perfect for chosen criterion 

Phenotypes 

Global flux 
optimum 

Most optimal 
change? 

Metabolism: connect phenotype to fitness at 
two scales 

Introduction 13/34 



What does it mean to be optimal? 
•  No previous test if internal fluxes evolve to be FBA optimal 
•  Can compare predictions to measured fluxes in three ways: 

1. Evolve to FBA optimum? 14/34 

Will Harcombe 

•  What should be optimized?  Normal = BM/S = C yield 
•  What is selected for in batch culture?  Mainly growth rate 

(Harcombe et al., 2013. PLoS Computational Biology) 



retention time 

13C-method to assay 
fluxes  

1. Harvest total protein 
2. Hydrolyze amino acids 
3. Derivatize 
4. GC-MS for mass dist. 
5. Analyze via network 

Do fluxes evolve to FBA-predicted optimum? 

(Harcombe et al., 2013. PLoS Computational Biology) 

1. Evolve to FBA optimum? 15/34 

ANC    Evolved populations    FBA prediction 



(Harcombe et al., 2013. PLoS Computational Biology) 

Do fluxes evolve to FBA-predicted optimum? 
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(Harcombe et(H b

•  Yield (BM/S) decreased slightly; 
fluxes consistently moved a bit 
away from optimum 



•  Either rate increased 
and slight drop, or both 
increased together 

10x Lenski 

2x three 
different KOs 

7x evolution 
on lactate 

(Harcombe et al., 2013. PLoS Computational Biology) 

Predictability depends on distance to optimum 

•  Take home: FBA 
optimizing for BM/S not 
perfect, but not bad...  
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Model system: C1 in Methylobacterium 

•  M. extorquens is a plant epiphyte 
•  Model for C1 metabolism (>50 yrs) 

(Ward and Marx, unpublished) 

Leaf print on methanol plate. 

Plants release methanol 
during cell wall growth  

Microbe-plant interactions 

Novel catalysts & regulators 

Soil ecology & global warming Methanol-based biotechnology 
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Model system: C1 in Methylobacterium 

•  M. extorquens is a plant epiphyte 
•  Model for C1 metabolism (>50 yrs) 

(Ward and Marx, unpublished) 

Leaf print on methanol plate. 

Plants release methanol 
during cell wall growth  
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C1 and HGT: new model for evolution 

•  C1 genes transferred between bacteria; 
maybe from archaea 

•  How are new functions incorporated? 
•  Discovered one new gene (DmrA) that was 

Methylobacterium-specific innovation 

(Marx et al., 2003a, 2003c. J. Bacteriology; Chistoserdova et al., 2004. Mol. Biol. Evol.; Kalyuzhnaya et al., 2005. J. Bacteriology) 
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Innovative combos not always initially fit… 
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C1 and HGT: new model for evolution 

(Marx et al., 2003a, 2003b. J. Bacteriology; Chistoserdova et al., 2004. Mol. Biol. Evol.; Kalyuzhnaya et al., 2005. J. Bacteriology) 
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•  Replaced existing formaldehyde 
oxidation pathway 
•  Foreign GSH-dependent pathway from 

Paracoccus denitrificans 
•  Single transcript, on plasmid, strong 

promoter   

•  Recovered growth, but 3x slower 
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C1 and HGT: new model for evolution 

IN 
OUT 

evolve  

•  An analogous scenario: 
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+ ??? 



C1 and HGT: new model for evolution 

(Marx et al., 2003a, 2003b. J. Bacteriology; Chistoserdova et al., 2004. Mol. Biol. Evol.; Kalyuzhnaya et al., 2005. J. Bacteriology) 

CH3OH 

HCHO 

H2O, 2e- 

HCOOH 

CO2 

NADH 

HC

CH2=H4F 

CHO-H4F 

CH=H4F 
BIOMASS 

NADPH 

H4F, ATP 

H2O 

H2O 

•  Replaced existing formaldehyde 
oxidation pathway 
•  Foreign GSH-dependent pathway from 

Paracoccus denitrificans 
•  Single transcript, on plasmid, strong 

promoter   

•  Recovered growth, but 3x slower 

•  Hypothesis, v.1: Biggest benefit mutations 
directly involved with C1 replacement 

•  Hypothesis, v.2: Metabolic model of C1 
catalysis can predict targets/interactions 
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Evolution with engineered HGT 
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Evolved in 
methanol 

900 gen. 
Ne ≈ 108 

Engineered ancestor 

-80 °C 

(Chou et al., 2011. Science; Lee and Marx, 2013. Genetics) 

•  Dramatic (>2X) but varied 
improvement  

•  Almost entirely specific to 
methanol 

•  What changed? 

2. Optimizing gene expression 25/34 



Beneficial mutations outside pathway 

(Chou et al., 2011. Science; Chubiz et al., 2012. PLoS One; Lee and Marx, 2013. Genetics; Carroll and Marx, 2013. PLoS Genetics) 

•  Most mutations in or directly related to new 
C1 pathway 

•  Uncovered general pattern of diminishing 
returns that decelerates adaptation 

•  Could predict epistasis at rough level  
•  Broad physiological disturbance and 

recovery (global mRNA; NAD(P)H levels) 
•  Uncovered order and dynamics of alleles 
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Beneficial mutations outside pathway 

(Chou et al., 2011. Science; Chubiz et al., 2012. PLoS One; Lee and Marx, 2013. Genetics; Carroll and Marx, 2013. PLoS Genetics) 

•  Most mutations in or directly related to new 
C1 pathway 

•  Uncovered general pattern of diminishing 
returns that decelerates adaptation 

•  Could predict epistasis at rough level  
•  Broad physiological disturbance and 

recovery (global mRNA; NAD(P)H levels) 
•  Uncovered order and dynamics of alleles 
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•••• UUUUUUnnnnnnccccccoooooovvvvvveeeeeerrrrrreeeeeedddddd ggggggeeeeeennnnnneeeeeerrrrrraaaaaallllll ppppppaaaaaatttttttttttteeeeeerrrrrrnnnnnn ooooooffffff ddddddiiiiiimmmmmmiiiiiinnnnnniiiiiisssssshhhhhhiiiiiinnnnnngggggg

• BBBBBrrrrroooooaaaaaddddd pppppphhhhhyyyyyysssssiiiiiooooollllloooooggggggiiiiicccccaaaaalllll dddddiiiiissssstttttuuuuurrrrrbbbbbaaaaannnnnccccceeeee aaaaannnnnddddd 

Uncovered general pattern of diminishing

• Broad physiological disturbance and

returns that decelerates adaptation 
•• Could predict epistasis at rough level  

Broad physiological disturbance and

Much of gene expression changed upon 
engineering, recovered in parallel with growth rate 

h bi t l 2012 PL S OS L d M



Optimize (benefits–costs) for pathway 

• Need enzymes for catalysis, but they are costly to make. 
• What is the optimal amount across a pathway? 
• How do populations evolve toward this? 
• How well do expression-altering mutations interact? 
• Predict this based upon mapping phenotypes to fitness? 

fit
ne

ss
 

[Ei] 
1.0 

1.0 

selection 

selection 

benefits 

costs 

? 
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Beneficial mut. affecting pathway exp. 

• Mutations of many types in different populations; 
25-45% benefit; affect expression differently 

(Chou and Marx, 2012. Cell Reports) 

David Chou 
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Expression per copy vs. copy# 

• Distinct, independent mechanisms to reduce 
expression of the GSH pathway enzymes 

• But no promoter mutations?... 
(Chou and Marx, 2012. Cell Reports) 

B

flhA fghAPmxaF

C

(A1)(A2) ISMex4 (A3)Δ11 bp

AGAAGGGAAGAACCCATCTAGAGTTCCACGACTTGAC ATG

*

(B5)ISMex25 Δ1109 bp(B2)
(B3)

PtraJ trfAoriToriV
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Independent effects upon expression 

•  Two classes should 
interact independently: 
•  EAB = EA × EB 

•  Yes 

•  Indep. upon fitness? 
•  No. 

* * 
* 

* 

* * 

Decreased 
copy 

Decreased 
copy 

Decreased 
expression/copy 

Decreased 
expression/copy 

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

Predicted Fitness

O
bs

er
ve

d 
F

itn
es

s

0 1 2 3 4 5

0
1

2
3

4
5

Predicted Expression (mU)

O
bs

er
ve

d 
E

xp
re

ss
io

n 
(m

U
) FlhA

FghA

B

flhA fghAPmxaF

C

(A1)(A2) ISMex4 (A3)Δ11 bp

AGAAGGGAAGAACCCATCTAGAGTTCCACGACTTGAC ATG

*

(B5)ISMex25 Δ1109 bp(B2)
(B3)

PtraJ trfAoriToriV

(Chou et al., PLoS Genetics, 2014) 
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Why antagonism and sign epistasis? 
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WAB = WA × WB; both provide benefit when together 

WAB ≈ max(WA,WB); pair same as best individual 

WAB < WANC; pair much worse than individual mut. 

fit
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ss
 

[Ei] 
1.0 

1.0 

selection 

selection 

benefits 

costs 

• Caused by tension between 
benefits and costs? 
•  Metabolic Control Analysis 

(MCA) 

(Chou et al., PLoS Genetics, 2014) 
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Map expression to fitness via model 

(Chou and Marx, 2012. Cell Reports; Chou et al., PLoS Genetics, 2014) 

W = Flux above threshold – enzyme costs 

E1 (FlhA) 

E 2
 (F

gh
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)*
 

fit
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fitness 
Single 

mutants 

ANC 

• ANC, single mutants, inducible 
promoter constructs (27 data points) 
to fit parameters 
•  Try to predict 17 mutational combinations 

*FghA necessary for catalysis but not in benefit 
term because all data higher than threshold 

W = (vmax×E1/(E1 + E½ max) – vT) – a×E1 – b×E2 

Nigel Delaney 
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Model predicts mutational combos 
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• Mechanistic model works quite well 

W = (vmax×E1/(E1 + E½ max) – vT) 
– a×E1 – b×E2 

(Chou et al., PLoS Genetics, 2014) 
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Interpret adaptation in light of model 

ANC 

inducible prom. 

single mut. 
2+ mut.. 
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•  What direction was phenotypic change? 
•  How far to optimum was achieved? (Chou et al., PLoS Genetics, 2014) 
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Interpret interactions in light of model 

•  A3, B5 same benefit (~0.45), 
but B5 has worse epistasis 

•  B5 on steep edge of peak  

•  Combining expression-
changing mutations may not 
speed adaptation 
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(Chou et al., PLoS Genetics, 2014) 
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Interpret interactions in light of model 

•  A3, B5 same benefit (~0.45), 
but B5 has worse epistasis 

•  B5 on steep edge of peak  

•  Combining expression-
changing mutations may not 
speed adaptation 
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(Chou et al., PLoS Genetics, 2014) 

aaaaaa
aaaaaa

eeeeeeep edge of peak

0

ct

A3 ttttn

ame benefit (~0.45), 
as worse epistasis 

eep edge of peak

1.5 2.0

ted Fitness

B5 

FlhA

Fi
t

A2 

Fi
tn

es
s 

1.0 

B5 

Metabolic model provided quantitative 
reconciliation of adaptation 

Ongoing work: 
1. Extending model to whole C1 metabolism. 
2. Test predictions of selection and 

epistasis with regulated promoters. 
3. Try to predict probability of future 

adaptive events from current physiology. 
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