

Enzyme economy in metabolic networks

Wolfram Liebermeister

Charité - Universitätsmedizin Berlin

Workshop on the Economy of a Cell: Resource Allocation, Trade-Offs and Efficiency in Living Systems

1. How can we make sense of enzyme costs?

Flux analysis ignores quantitative relations between enzyme levels and fluxes

Do we need global models to understand local patterns in enzyme investment?

2. How can we make sense of enzyme usage?

A first intuition: fluxes should lead to value production

Labour value in economics

- Labour value is defined by time invested in the production of a good
- The value increases during production according to invested labour

Analogous postulate for metabolism

- Fluxes should produce valuable metabolites from less valuable ones
- Value of metabolites should increase along the flux
- The value difference (in reaction or pathway) corresponds to enzyme efforts

Economic potentials should also determine the flux directions

Gibbs free energy dissipation

$$-\Delta G \cdot v > 0$$

Sign constraint: $sign(v) = sign(-\Delta G)$

Enzyme benefit = enzyme cost

$$\Delta w \cdot v = y > 0$$

Sign constraint: $sign(v_l) = sign(-\Delta \mu_l)$

A condition for enzyme optimality: the reaction balance equation

Kinetic models with optimal enzyme levels

Fitness f = Return g - Investment h

Optimality condition for active enzymes:

$$\frac{\partial g}{\partial \ln u} = \frac{\partial h}{\partial \ln u} > 0$$

"Enzyme benefit" = "enzyme cost"

$$\Delta w \cdot v = \frac{\partial h}{\partial u} \cdot u$$

"Economic potential x Flux = "Enzyme x Enzyme level" x Enzyme

The economic potentials can be defined by control coefficients

Objective:

Production of external metabolites

Economic potential:

Directly from production objective

Economic potential: "Control coefficient"
$$w=\frac{\delta z}{\delta \varphi}$$

Reaction balance ... and compound balance

Metabolic objective function:

Net production of some external metabolites

Reaction balance equation

Compound balance equation

$$0 = \sum_{l} E_{li} \, y_l$$
 Scaled Enzyme elasticity cost

General metabolic objectives lead to extra terms

Metabolic objective function:

Some function of the steady-state fluxes and concentrations

Reaction balance equation

Compound balance equation

Two simple rules for the enzyme costs in a linear pathway

1. Along the pathway: Reaction balance "Total enzyme cost = Total flux benefit"

$$\sum_{l} y_{l} = b$$

2. Around each metabolite: Compound balance "Enzyme costs scale inversely to elasticities"

$$\frac{y_{l+1}}{y_l} = \frac{\bar{E}_l}{\bar{E}_{l+1}}$$

The economic reaction balance can be used as a constraint in FBA

Stationarity

$$Nv = 0$$

Energy dissipation

$$-\Delta\mu_i \cdot v_i > 0$$

Benefit principle

$$\Delta w_i \cdot v_i > 0$$

Economical flux distributions must be free of futile cycles

Beneficial, economical flux distribution

Beneficial, but uneconomical flux distribution

Futile test mode

Definition "Futile flux mode"

A set of active reactions in v that can support a stationary, futile flux with the same flux directions as in v

FBA with flux minimisation covers all enzyme-optimal flux distributions

FBA with minimal fluxes and enzyme-optimal kinetic models

Stefan's minimal model of fermentation and respiration

Respiration (high yield)

Fermentation (low yield)

Economic variables show enzyme-optimal states from a new angle

- Notions of economic value and cost for metabolic systems
- Local balance relations
- Futile flux modes
- Economic relationships between flux analysis and kinetic models
- Analogies between enzyme economy and thermodynamics

arXiv:1404.5252

Acknowledgements

Charité - Universitätsmedizin Berlin

Hermann-Georg Holzhütter Bernd Binder Andreas Hoppe

Weizmann Institute of Science

Ron Milo Elad Noor Avi Flamholz

Technion – Israel Institute of Technology

Tomer Shlomi Naama Tepper

Gain conditions and economical flux distributions

Gain conditions (from cost-benefit balance $\frac{\partial g}{\partial u_l} = \frac{\partial h}{\partial u_l} > 0$)

 $\mathbf{K}^{\mathbf{T}} \operatorname{diag}(\mathbf{y}) \mathbf{v}^{-1} = \mathbf{K}^{\mathbf{T}} \mathbf{z}^{\mathbf{v}}$ Flux gain condition

Concentration gain condition $(\bar{\mathbf{E}} \mathbf{L})^{\mathbf{T}} \operatorname{diag}(\mathbf{y}) \mathbf{v}^{-1} = -\mathbf{L} \mathbf{z}^{c}$

Flux gain $z_l^{\mathrm{v}} = \partial z / \partial v_l$ $z_l^{\rm v} = \partial z/\partial c_i$ Concentration gain $y_l = \partial h/\partial \ln u_l$ Enzyme cost

 \mathbf{K} Kernel matrix Link matrix Elasticity

 $ar{\mathbf{E}}$ matrix

Beneficial flux distribution v Positive flux benefit $b = \mathbf{z}^{\mathbf{v}} \cdot \mathbf{v} > 0$

Economical flux distribution v:

Flux gain condition can be satisfied with positive costs v

Enzyme-beneficial kinetic models can be constructed from given flux distributions

Sampled economic potentials in yeast central metabolism

