# Dynamics of summer monsoon active phases and onset over Pakistan

#### F. S. Syed<sup>1</sup>, J. H. Yoo<sup>2</sup>, H. Körnich<sup>3</sup>, F. Kucharski<sup>2</sup> and M. Latif<sup>1</sup>

- 1) Department of Meteorology, COMSATS Institute of Information Technology, Islamabad
- 2) Abdus Salam International Centre for Theoretical Physics, 34014, Trieste, Italy
- 3) Department of Meteorology, Stockholm University, 10691, Stockholm, Sweden

ICTP-IITM-COLA Targeted Training Activity (TTA): "Challenge in Monsoon Prediction", June 23, 2014, Trieste

## Western Edge of the South-Asian Monsoon (WESAM)

 For the peak monsoon season (77days from 1st of July to 15th of September) Average Station Data

- mean rainfall is 6.1 mm/day
- standard deviation of 8.7 mm/day



The orographic height (shaded unit: m) and summer (JAS) mean rainfall (contour) of WESAM region. The white rectangular box indicates the core monsoon region. The rainfall climatology is calculated for the period of 1950-2000 using CRU TS2.0 data. The contour interval is 1mm/day.

## **Motivation**



## Background

- The core region of WESAM lies over north central Pakistan. For the peak monsoon season (77days from 1st of July to 15th of September), mean rainfall is 6.1 mm/day with standard deviation of 8.7 mm/day in the averaged station observation data used in this study
- 2. The south Asian monsoon (SAM) exhibits clear alteration of Active (wet) and Break (dry) phases within a season. The northward propagating intraseasonal oscillations (ISO) with 10-20days and 30-60days periods are found to be responsible for the active and break phases of SAM. (e.g. Krishnamurthy and Shukla, 2000)
- 3. In previous studies on the ISV of SAM, different criteria are used for identification of breaks and active phases (AP). Webster et al. (1998) considered spells of convection and 850 hPa zonal winds over a larger scale region (65-95°E, 10-20°N), Goswami and Ajaya Mohan (2001) defined AP on the basis of the strength of the 850 hPa wind at the single grid-point 15°N, 90°E, Krishnan et al. (2000) defined break phases as days with positive Outgoing Longwave Radiation (OLR) anomalies over northwest and central India

## **Station Data:**

- 1. The daily rainfall data of 11 meteorological stations which lies in the core WESAM region (32-35° N, 71-76° E) is used.
- 2. To avoid influence of seasonal monsoon onset and retreat, 77 days of peak monsoon season (1st July~15th September, JAs) were chosen for 28 years (1979-2006)
- 3. The EOF analysis showed that the stations used to define the rainfall index also have homogeneous pattern of their primary variability.

## **Active Phases Definition:**

- 1. The normalized rainfall time series is defined by averaging the daily rainfall over this core WESAM region and standardizing the daily rainfall time series by subtracting its daily long term normal (1979-2006) and dividing by its daily standard deviation (SD).
- 2. The daily long term normal and standard deviation were normalized by fitting a 4th degree polynomial. The APs are identified as the periods during which the normalized rainfall anomaly is more than 0.6 times the standard deviation (70~120% of daily mean rainfall climatology), consecutively for three days or more. In this way 45 active phases (167 days) were identified.



The daily precipitation of average of 11 stations from 1st of July to 15th of September, 1993 and normalized climatological (1979-2006) daily mean and standard deviation.

# **Evolution of temperature and geopotential height anomalies**

- (a) 300hPa geopotential height composite anomaly (contour) and temperature anomaly (shading) at 6 days before active phase (AP). The composite values with 95% significance are shown as thick contours and shaded.
- (b), (c), (d) same as (a) except for 4days, 2days, and 0days before AP
- (e)-(h) same as left panels except for
  850hPa level. Contour interval is 10 and
  5 for 300hPa and 850hPa geopotential
  heights, respectively.



## **Upper tropospheric anomaly : the earliest signal (~week before)**



Warm anticyclone d evelops until the beginning of event

As soon as event o ccurs, the anomalo us anticyclone col lapses.

## **OLR and Low-level winds**

Same as in previous figure except for OLR and 850hPa winds. Shadings in right panels are divergence (× 5.0 × 106) of 850hPa wind anomaly.

The wind anomalies with 95% significance are plotted as vector.



#### **Vertical structure**

- (a) Vertical (sigma level) cross-section of zonally averaged (71E-75E) composite anomalies of:
- moisture flux convergence (shaded; 1.0×10<sup>5</sup> g/kg s<sup>-1</sup>)
- horizontal wind divergence (thick lines; ×1.0 × 10<sup>5</sup>)
- mixing ratio (thin green lines; g/kg) at 3 days before AP.

The grid points with insignificant values (less than 95%) are omitted in the zonal average.

(b), (c), (d) same as (a) except for 2 days, 1 days, and 0 days before AP. Contour interval of divergence is 0.2. Contours of mixing ratio drawn are 16, 14, 12, 10, 8, and 6 g/kg from south to north direction. The moisture flux convergence values with 95% significance are plotted.







# Monsoon onset over Pakistan



## Data used...

- Daily rainfall station data 17 Meteorological stations, 1961-2007, obtained from Pakistan Meteorological Department (PMD)
- APHRODITE (version APHRO-V1101)- daily dataset, 0.5°x0.5° grid resolution, 1961-2007.
- Daily Precipitable Water (PW) data- 1° × 1° horizontal grid resolution, 1988-2009, obtained from NASA Water VApor Project (NVAP)-M, archived at Atmospheric Science Data Center (ASDC), NASA Langley Research Center.
- NCEP/NCAR reanalysis- daily dataset at 1° × 1° resolution, 1961-2007, standard pressure levels.

## **Objective Criterion**

- Precipitation Index made both for station (17) and APHRODITE daily area average precipitation
- Precipitation index threshold = 4.4 mm/d (station), 3.1 mm/d (APHRODITE)
- Monsoon onset date is the first date the threshold is met for 3 consecutive days after June 1.
- Normalized Precipitable Water Index (NPWI) is calculated as:

$$NPWI = \frac{(PW - PW_{min})}{(PW_{max} - PW_{min})}$$

Where  $\text{PW}_{\text{max}}$  and  $\text{PW}_{\text{min}}$  are the 22 years average of the annual maximum and minimum daily PW data respectively.

- If 5-grid cells out of 9 fulfill threshold (0.168; Golden Ratio) criterion for 3 consecutive days after 1st of June, the monsoon onset is declared.
- large-scale circulation anomalies and the thermo. structure of the atmosphere leading the onset, NCEP/NCAR reanalysis daily data (2.5° × 2.5°), standard pressure levels, 1961 to 2007.



## **PI time series to calculate PI threshold values**

Climatological (1961-2007) area-averaged daily APHRODITE (thick line) and PMD station (dotted line) precipitation indices in millimeters per day for the core monsoon region over Pakistan.

| Station |       | APHRODITE |       | PW-ASDC |        | Station |         | APHRODITE |         | PW-ASDC |                    |
|---------|-------|-----------|-------|---------|--------|---------|---------|-----------|---------|---------|--------------------|
|         | Onset |           | Onset |         | Onset  |         | Onset   |           | Onset   |         | Onset              |
| Years   | Dates | Years     | Dates | Years   | Dates  | Years   | Dates   | Years     | Dates   | Years   | Dates              |
| 1961    | 6JUL  | 1961      | 23JUN |         |        | 1991    | 18JUL   | 1991      | 13JUL   | 1991    | 23-Jul             |
| 1962    | 17JUL | 1962      | 17JUL |         |        | 1992    | 9JUL    | 1992      | 11JUL   | 1992    | 10-Jul             |
| 1963    | 18JUL | 1963      | 12JUL |         |        | 1993    | 24JUN   | 1993      | 24JUN   | 1993    | 1-Jul              |
| 1964    | 3JUL  | 1964      | BJUL  |         |        | 1994    | 30JUN   | 1994      | 25JUN   | 1994    | 13-Jul             |
| 1965    | 3JUL  | 1965      | 16JUL |         |        | 1995    | 20JUN   | 1995      | 20JUN   | 1995    | 11-Jul             |
| 1966    | 20JUN | 1966      | 23JUN |         |        | 1996    | 13JUN   | 1996      | 13JUN   | 1996    | 2-Jul              |
| 1967    | 18JUL | 1967      | 24JUL |         |        | 1997    | 27.JUN  | 1997      | 27.JUN  | 1997    | 2-Jul              |
| 1968    | 26JUN | 1968      | 9JUL  |         |        | 1998    | 9.11.11 | 1998      |         | 1998    | 3lul               |
| 1969    | 22JUL | 1969      | 20JUL |         |        | 1000    | 2       | 1000      | 1 11 11 | 1000    | 28- lun            |
| 1970    | 2JUL  | 1970      | 13JUN |         |        | 2000    |         | 2000      |         | 2000    | 20-0011<br>23_ lun |
| 1971    | 14JUN | 1971      | 14JUN |         |        | 2000    |         | 2000      |         | 2000    | 11 Jun             |
| 1972    | 4JUL  | 1972      | 1JUL  |         |        | 2001    |         | 2001      |         | 2001    |                    |
| 1973    | 2JUL  | 1973      | 2JUL  |         |        | 2002    |         | 2002      |         | 2002    | ə-Jui              |
| 1974    | 13JUL | 1974      | 23JUN |         |        | 2003    | 5JUL    | 2003      |         | 2003    | 25-Jun             |
| 1975    | 10JUL | 1975      | 28JUN |         |        | 2004    | 18JUN   | 2004      | 15JUN   | 2004    | 13-Jun             |
| 1976    | 15JUN | 1976      | 15JUN |         |        | 2005    | 29JUN   | 2005      | 29JUN   | 2005    | 25-Jun             |
| 1977    | 11JUN | 1977      | 11JUN |         |        | 2006    | 16JUN   | 2006      | 27JUN   | 2006    | 5-Jul              |
| 1978    | 24JUN | 1978      | BOJUN |         |        | 2007    | 15JUN   | 2007      | 14JUN   | 2007    | 22-Jun             |
| 1979    | 12JUL | 1979      | 12JUL |         |        |         |         |           |         | 2008    | 7-Jun              |
| 1980    | 24JUN | 1980      | 24JUN |         |        |         |         |           |         | 2009    | 19-Jul             |
| 1981    | 1JUL  | 1981      | JUL   |         |        |         |         |           |         |         |                    |
| 1982    | 18JUL | 1982      | 19JUL |         |        | -       |         |           |         |         |                    |
| 1983    | 1JUL  | 1983      | JUL   |         |        | -       |         |           |         |         |                    |
| 1984    | 27JUN | 1984      | 27JUN |         |        | SD      | 13      | SD        | 11      | SD      | 12                 |
| 1985    | 13JUL | 1985      | 7JUL  |         |        |         |         |           |         |         |                    |
| 1986    | 24JUN | 1986      | 29JUN |         |        | -       |         |           |         |         |                    |
| 1987    | 24JUL | 1987      | 25JUL |         |        | Ave     | 2-Jul   | Ave       | 1-Jul   | Ave     | 30-Jun             |
| 1988    | 3JUL  | 1988      | BJUL  | 1988    | 16-Jun |         |         |           |         |         |                    |
| 1989    | 2JUL  | 1989      | 13JUL | 1989    | 9-Jul  |         |         |           |         |         |                    |
| 1990    | 26JUL | 1990      | 1JUL  | 1990    | 26-Jun | Median  | 2-Jul   | Median    | 1-Jul   | Median  | 2-Jul              |

## Comparison of station, APHRO and ASDC onset dates



## Mean composite of OLR

and moisture transport (meridional component); zonal average (70-76°E)



ප්ර රේද රේද 7රු 75ද නර්ද නර්ද ඉර්ද ඉර්ද 100ද

-21



## Moisture Transport & HGT 925 hPa composite anomaly



## HGT 300 hPa composite anomaly





The leading (upper panel) and second (lower panel) modes of CMCA heterogeneous correlation maps, between 200 hPa geopotential heights (contour interval 0.2) over Eurasia (bigger rectangle) and precipitation over south Asia (smaller rectangle)

The correlation of the EC of the leading mode of 200 hPa geopotential heights with CGT index is **0.78** 

The correlation of the EC of the second mode of 200 hPa geopotential heights with SNAO index is **0.7** 



## Summary

- Robust precursors of AP can be found in the upper tropospheric circulation. About a week before the AP starts, a positive temperature anomaly in the upper troposphere (300hPa) appears in the northwest of core region. This anomaly slowly moves eastward and becomes stronger until the beginning of AP. Together with the temperature anomaly; a positive geopotential height anomaly also develops at the same position
- 2. Upper level anomaly and local land surface thermal feedback intensifies a baroclinic structure yielding lower level divergent flow near the Tibetan plateau while WNSAM region keeps stable and dry.
- 3. The anomalous wind from the low level anticyclone forms a convergence zone along the foothills of Himalayas and this convergence zone expands toward the core region as the warming of core region enhances, which accumulates moisture from the south near the surface of the core region
- South Asian summer monsoon intraseasonal oscillations seem to be less important in the AP of WESAM than the midlatitude circulation and land-surface feedbacks.
- The mean monsoon onset date is 1<sup>st</sup> of July and CGT seems to play a role in the monsoon onset over Pakistan

Thanks for the attention !

## **Upper tropospheric anomaly : the earliest signal (~week before)**



Warm anticyclone d evelops until the beginning of event

As soon as event o ccurs, the anomalo us anticyclone col lapses.

#### Lower tropospheric anomaly : follows upper level but eastward tilt in height field



Anticyclone over Tibet an plateau develops.

Warm area resemble to pography. (effective h eating of atm due to h igh altitude)

Column mean heating en hances relate circulat ion anomaly

But, upper atmosphere is warmer - stable

As soon as event occur s, the anomalous antic yclone collapses.

## OLR & 850 wind/divergence



Positive OLR due to st able atm. - surface he ating - later, heat lo w forms

Clouds over Arabian se a : pre-condition?/moi sture source?

Sudden shift at -1,0dy

Strong divergence deve lops at Tibetan Platea u - convergence band a long the Himalaya - ca uses low level converg ence at core region.