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Hydrodynamics in 1 and 2 dimensions 1s known since the 1960°s to be
plagued by divergence problems. Transport coefficients in linearized
hydrodynamic equations are given by Green-Kubo expressions, such as

D = lfmdtgv(o)m(f))_
d Jo

Assuming regular diffusion of mass and of momentum one finds that
the average velocity of the tagged particle at time ¢, given it started out
with velocity v, is proportional to v, ¢ "9,
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1 DECAY OF THE VELOCITY AUTOCORRELATION FUNCTION 19

FIG. 1. sStatistically averaged velocity field around a
central disk from molecular dynamies (heavy arrows)
compared to that given by the hydrodynamic model (light
arrows). Because of symmetry only half the plane is
shown. The scale of distance is indicated by the size of
the central disk as shown by the smallest half-circle.
The sizes of the other four concentric circles have been
determined so as to include roughly six neighboring
particles each. These semicircles have been partitioned
further into four parts, as indicated by the lines, so as
to have a measure of direction relative to the velocity
vector of the central particle at zero time. The size of
the arrows indicates the magnitude of the velocity (the
scale of velocity is indicated as 0.01 of the initial veloc-
ity in the upper right~hand corner) and the direction of
the arrow is determined by the parallel and perpendicular
components of the velocity (relative to that of the central
particle initially) averaged over all the particles in that
section at a particular time. The arrow is hence drawn
at the center of the section. A correction of 1/N-1 has
been added to the parallel component. The comparison
is made at 9.9 collision times where the molecular-
dynamic and hydrodynamic velocity autocorrelations be-
gin to nearly agree, as seen on the graph by the velocity
vectors of the central particle. (See also Fig. 3.) In
the molecular-dynamics run, 224 hard disks were used
at an area relative to close packing of 2, For the hydro=-
dynamic run, the conditions are given in Table I.

hydrodynamic calculation. The late-time kinks
seen in Fig. 3 in the velocity autocorrelation func-
tions calculated for 504 particle systems are
caused by the arrival of sound waves from the pe-
riodic images. The arrival time of these inter-
ferences can be predicted by the hydrodynamical
model,

A simple analysis of the hydrodynamical model
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FIG. 2. Comparison of the veloeity autocorrelation
function p(s) as a function of time (in terms of mean col-
lision times s) between the hydrodynamic model (circles)
and a 500-hard-sphere molecular-dynamic calculation
(triangles) at a volume relative to close packing of 3 on
a log-log plot. The straight line is drawn with a slope
corresponding to s7¥ To the molecular dynamics p(s)
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FIG. 3. The decay of the velocity autocorrelation
function at large times for hard disks at three densities:
A/A;=2,3, and 5. The closed and open triangles refer
to molecular-dynamic runs of 986 and 504 particles,
respectively. A 1/N =1 correction to the molecular-
dynamic results has been applied. At A/A, of 2 and 5
the 504-particle results include the initial deviations
due to the interference of neighboring cells at the bound-
ary while all other results have not been plotted beyond
the point where serious interference is indicated. The
dashed line represents the results of a hydrodynamic
run at A/A, of 2 (see Table I for conditions) in which the
initially moving square area element was given two
different velocities, the root-mean-square molecular
velocity (squares) and tha.t'h th as large (circles).



Hydrodynamics in 1 and 2 dimensions 1s known since the 1960°s to be
plagued by divergence problems. Transport coefficients in linearized
hydrodynamic equations are given by Green-Kubo expressions, such as

D = lfmdtgv(o)m(f))_
d Jo

Assuming regular diffusion of mass and of momentum one finds that
the average velocity of the tagged particle at time ¢, given it started out
with velocity v (0) is proportional to v (0) £ ¥, The time integral of this
diverges for d =1 or 2.
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One can improve on this by using self-consistent theories. These
predict:

1

\Int

< (01 >~t2% (d =1)

<v(0)-v(t) >~

(d=2)
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FIG. 5. (Color online) The VACFs in a moderately dense hard-
disk fluid are compared between numerical simulations and the the-
oretical predictions using the simple MCT [6] (dashed line) and
self-consistent MCT [14,15] (solid line).
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FIG. 4 (color). Total heat current autocorrelation, r*®0N "
(J(1)J(0)) for r = 2.2 and T = 2. Total momentum is P = 0.



Fluctuating Burgers equation

dﬂ};—’ ) _ —1; NV (r,t) + DV?o(r,t) — V. jp(r,1)

Can be used for describing driven, collective single file
diffusion, traffic flows and ASEP’s among other things.
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Fluctuating Burgers equation

dﬂ};—’ ) _ —1; NV (r,t) + DV?o(r,t) — V. jp(r,1)

For Fourier components:

i:‘;(k, t) = _'“";{;f“ ? o(q.t)o(k — q,t) — DI (k,t) — ikjy (k. t)

ot
May be rewritten into the integral equation

L
o(k,t) = eﬁ_mz‘~t_f"33'qir(ﬁc,t{|)_/ dr e Pk L g (k. T)

to

# .
, ik . w - -
o / dr E_DFCLEH_T:I .-}LT Z U(q T\»]U(k — 4, T)
to = a




t
d(k,t) = e PFIERIG(k 1) — / dr e PF ik g (k. T)

to

i .
_DE2(i—T ik« w ~ “
—/ dr e MU )?’_V E olq, 7)ok —q,7)

to

One can iterate this equation and ma,ke a dl&gl‘&ﬂ]ﬂl&t]( expansion for the
time correlation function S(k,t —to) = + < o(—k, to)o(k,t) >

Diagrammatic elements:

. . 26
9 representing factors e~ P4 (i —7i-1)

q
vertices {_ q representing factors v ey, de Z g

o »o(q.to)  *oldi[—iq- jr(q.T)]
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L
d(k,t) = e P0Gk o) — / dr e PRk g (K, T)
to

t
k.
—/ﬁd’re_m‘ (tTE}LSbZUQ’T —q,7)
0

ke to)(k. ) > ={; k ..+++..£1r k ite “q @
roe— g g g
_|_...
=S(k,t-t))
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Next 1teration:

< d(—k.to)o(k.1) >= o k

1
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Assume the fluctuating current may be represented as Gaussian white noise
with variance given i Fourier representation by

= (@03 ld 1) = 2DS(a)d(q + @)s(t — )1,

with S(q) = S(q.t = 0).

Assuming that n-point equal time density correlation functions in the station-
ary state may be factorized mto products of two-point correlation functions.
one may sunplify the diagrams by using the identity

.

1 [ t :
'[;"f dTlf dTQE_DkQ(T1+TE} < jL(k*Tl)jL(_k! TQ) = bf(k)]..
0 0
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For example:

with right vertex weight:
ik - w S(0) Jotdr



1 '~ . Pt a . ’
T aolg.tiaclq.t')) =2D5(q)é(q 4+ q )o(t — 1)1

with S(k) = S(k,0)

t t
—s RS (k) + / dri / drye” PRk < ik 1)gn (K, 72) >= S(k).
0 0 ' '

with vertex weight 2ik - w S(0) Jotdr.



Applying the same reductions to the full diagrammatic expansion of
S(k,t) one obtains

o~

S(k!t) — » ™ +

o

[
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Diagrammatic mode coupling expansion leads to Dyson
structure:
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Applying the same reductions to the full diagrammatic expansion of
S(k,t) one obtains

S(k,t) = o o

o

[

A skeleton renormalization gives:

l

Keeping only this leads to a one-loop mode coupling approximation.
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A skeleton renormalization gives:

!

Keeping only this leads to a one-loop mode coupling approximation.
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0S(k,t) (w+k)2 t—to . |
= = —DE*S(k,t)— ()V/ dTZ@* 7)S(k—q.7)S(k,t—T),

where again all equal-time correlation functlons have been approximated by

1
S(0). Notice that in the limit V — oc, —Z approaches ) /d.q.

The Green-Kubo formalism relates the time derivative of S{k,t) to a
current-current time correlation function -

0 . S :
—S(k,t) = —k? / dr M(k,7)S(k,t — )
ot ;

with
dJ(¢)

e

lim M(k,7) = kk : < (J(U)— < J(0) > — (N(0)— < N :}))

(J(t)— < J > —agf){x( t)— < N ::—-)) >




On the other hand, mn one-loop MC approximation:

{u' + -'
M(k.t Dé(t) + H ( ﬁ. —q.,t).
)= S(0)V Z b "
For d>2, S(k,t) may be approximated by S(0)e—PFt. —

(107 L.-J ":{ﬂ)
2(87 Dt)d/2

Mk, t) = t large

For d = 1,2 the mode coupling term dominates
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DS(k, ) , e (w- k)2 [t ,~ : :
— = —DE"S(k, t)—2— / dr S(q,7)S(k—q,7)S(k,t—T
- -2z ), > Slg, q,7)S(k,t—7)

q
For d = 1, 2 the mode coupling terms dominate the diffusion equation. To

analyze this for d = 1, first introduce dimensionless variables: 7 = at; kK = gk;

S(%, 1) whS2(0) 16D
Y(K,T) = ———— with a = — = ; =
(5, 7) S(0 128 D3 w2S(0)
OX (K, T) 1

o7 :‘E”g[mvf)+g/ d"'"’/ AT\, )2 (k= ), 0))5(k, T — )
: T Jo e

Assume: X(x,7) = h(xt”), with 2(0) =1
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DS(k, ) , e (w- k)2 [t ,~ : :
— = —DE"S(k, t)—2— / dr S(q,7)S(k—q,7)S(k,t—T
- -2z ), > Slg, q,7)S(k,t—7)

q
For d = 1, 2 the mode coupling terms dominate the diffusion equation. To

analyze this for d = 1, first introduce dimensionless variables: 7 = at; kK = gk;

S(5.%) w*S2(0) 16D?
ST e T s 7T ) T
azgi’ 2 - _%Hg [E(H" tj+g/ d"j/ dAYX(N\, 0)X(k— A 0))E(k,T—0)
f T Jo e

Assume: 2(x,7) = h(xt”), with 1(0) =1 —
>(x,7) = h(kt™")
< J(0)J(t) >~t7"

D(k) = [fdi M (k,1)~ k™"
0



The Kardar-Parisi-Zhang equations

By integrating the 1d fluctuating Burgers equation over x one obtains
the 1d KPZ equation:

a IrI .1-"{" 1 i i , ®
ng ) - —— .V (r,t) + DV2(r,t) = V. j (r,1)
.'C_:};F}.IC:I?,_I t\/l B C}Eh(i t) w C}h(l, f\/l . . .
o b dr? 2 dw + (@)

Prahofer and Spohn found an exact solution for the polynuclear growth model,
which belongs to the KPZ universality class.
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Main results of PS, translated to the fluctuating Burgers equation:

~ 2/3
o 9 1056 2\
L o) »= 21056 (50
L J3re(1/3) \ 4t
|'II-' X )
8 [28(0)w
D(k) /250w

T 19444\ k]

Exact scaling functions were obtained for the density-density
correlation function S(k,t) (or S(x,t)).
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Main results of PS, translated to the fluctuating Burgers equation:

p 2/3
L 21056 [ S(O)w?\
V3TE(1/3) \ 4t

1
L

!

8 [25(0)w?
19444\ k]

D(k)

In fact their results contain exactly known scaling functions for
arbitrary combinations of small %, long times or small frequencies.
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Fluctuating hydrodynamics in one dimension

Op(x,t) d

@8 = 2 (e tyu(a, )

J a\ ~ Op(z,t) O | o Ou(,t) do"(x,t)
p (E 1 H'(I’t)%) u(z,t) = — 0 Ty {g(n(m,t},T(ﬁ,,t)) 9 } .

N aN ou(z, 1)\
pla, )T (x, 1) (dt + u(x, 1‘)51) s(x,t) = ((n(x,t), T(x,1)) ( 5 ) +

) ou(x,t) 0 JT (x, 1) dq"(z, 1) R
+o"(x,1) . + 5 (/\(:r t) o ) — 177

with
dp(x,t) (dp)) de(x,?) s op\ on(x,t)
ox de | — 0x on ox

and derivatives of s(x, 7) and 7(x,?) defined in similar way



Linearization plus Fourier transform gives

on(k,t o
é}t' ) = —ikngu(k,t),
u(k,t o ) rer e - .
Po uét' ) = —ikp(k,t) + ik [ik{oulk,t) + " (k,t)]
dt o Po

Diagonalizing gives three hydrodynamic modes,

o oN 172
ay(k,t) = (2%) (co'p(k,t) +og(k,t), O==%1; v=-0ick - %sz
3 1/2
apg(k,t) = ('HDTQC ) (e(k,t) — hon(k,t)) v = _ikz - l)Tk2
' P

I’lC‘p
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The time correlation functions of the hydrodynamic modes satisfy
linear equations involving memory kernels, of similar form as the
density-density time correlation function for the Burgers equation.

0, (k. t f ot :
"3({ | = ik, (k1) ~ / A7 N, (k, 7) S, (k,t — 7)
f {

a¥a, & t - -
PWukst) _ o / dr My (k, 7)Su(k,t — 7).
dt 0

Like for the fluctuating Burgers equation the memory kernels may
be expressed through a diagrammatic mode coupling expansion, but
now there are three types of lines, corresponding to the three types
of hydrodynamic modes and 27 vertices, corresponding to all
combinations of lines coming in and running out.
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Crucial observation: Due to different propagation speeds of different
types of modes internally only couplings of a mode o to two modes
with the same value of ¢ contribute to the dominant long time behavior.

Therefore, 1n a comoving frame the sound-sound time correlation
functions to leading order are of the same form as the Burgers
density-density time correlation function.

Leading long-time and small wave number results:

S, (k1) = exp(=iockt) f,s[(N2V,2)" kt]
8\2 Vo poo -9 (GCO” )
g o 1/2
19.444 " 2(pP) "¢\ on s
/
é) VY ( 2¢ (V7) )1 5 ;35
51 vee | 1.0528V

(k) =

1 3
L0, )= 2



<ag(-x) a;(x)> |
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N\

blue line: PS-scaling function
oreen lines: MD results for various k-
red lines: MD results. 1f ¢c*k*t >= 10

2 3 4
x =k [2%%(1/2) V, t]**(2/3)



Heat mode to leading order does not couple to a pair of heat modes,
but only to couple of equal type sound modes. Therefore heat
conduction coeffient behaves differently from sound damping constant,
because pair of sound modes 1in resting frame oscillates as exp(oic kt).

Main results:

S, (k,) = exp(=D, (k)k* | 1)

2.1056 (V27)?
M) =nC D..(k)=nC el
( ) p T( ) p 21/3(V000)2/3 (Cok)1/3
1

2.1056 (V7Y
—{J. (0)J. (1)) =nC H
L< H( ) H( )> p 21/3 /3 FE(1/3) (V000)2/3 t2/3




<ay(-k,0) agy(kt)>
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Mean square displacement of a tagged particle may be obtained from
the collective dynamics through the 1dentity

<(x(t) x(O) > S(k O) S(k t)

with
S(k,t) = {n(=k,0)n(k,t))

Explicitly:

L 2k,

/J’mnc zne,

i)
(20 )1/3 (VOUG )2/3

r (3/5)a3/5 3/5

(x()-x(0))") -

with a=1.0528




< Ix(1) x(0)]* >

4000 particles,n = 0.8, e = 1.0

| | | | | |
B red line: simulation plus CM correction >
B green line: full theory /—
B blue line: linear term ﬂﬁ,
B f/ simulation
== 7
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<v(0)v(t) >
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Concluding remarks:

1. For typical hamiltonian systems in 1d the dominant transport
properties can be expressed in terms of thermodynamic properties
alone. The long time and small wave number behavior 1s known
exactly in terms of the Prahofer-Spohn scaling functions.

2. The corrections to the leading terms are appreciable.This 1s because
couplings of e.g. a sound mode to two opposite type sound modes or

two heat modes decay only slightly faster with time than couplings to

two equal type sound modes. The exponents of these correction terms
can be obtained exactly, but the amplitudes only approximately.

3. Previous mode-coupling theories by Delfini et al. give a very good
approximation for weakly anharmonic potentials. They require
corrections otherwise, as energy density contributes to the sound modes



4. Sound damping becomes almost normal 1f V. =0. This happens for
( d c,n

dn
superdiffusive. Heat conduction becomes more strongly superdiffusive.

No more KPZ.

) = (). In fact sound attenuation is still, logarithmically,
S

5. In spite of the diverging Green-Kubo integrals the transport
coefficients in the nonlinear hydrodynamic equations need not be infinite.
The long time tails in the current-current correlation functions are

due to the nonlinearities in the hydrodynamic equations. Whether or
not the transport coefficients in the nonlinear hydrodynamic equations
are 1n fact divergent to my opinion 1s an open question.

Ref.: HvB arXiv:1106.3298v3 [cond-mat.stat-mech],
PRL 108.180601 (2012)
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