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 Hydrodynamics in 1 and 2 dimensions is known since the 1960’s to be 

plagued by divergence problems. Transport coefficients in linearized 
hydrodynamic equations are given by Green-Kubo expressions, such as 
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Assuming regular diffusion of mass and of momentum one finds that 
the average velocity of the tagged particle at time t, given it started out 
with velocity v0 is proportional to v0 t -d/2. 







 
 Hydrodynamics in 1 and 2 dimensions is known since the 1960’s to be 

plagued by divergence problems. Transport coefficients in linearized 
hydrodynamic equations are given by Green-Kubo expressions, such as 
 
    D 
 
 
Assuming regular diffusion of mass and of momentum one finds that 
the average velocity of the tagged particle at time t, given it started out 
with velocity v (0) is proportional to v (0) t -d/2. The time integral of this 
diverges for d = 1 or 2.  



One can improve on this by using self-consistent theories. These 
predict: 
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Fluctuating Burgers equation 
 
 
 

Can be used for describing driven, collective single file 
diffusion, traffic flows and ASEP’s among other things. 
 
 
 
 



 
 

Fluctuating Burgers equation 
 
 
 

For Fourier components: 
 
 
 
May be rewritten into the integral equation 
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Diagrammatic elements: 
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Next iteration: 





  with right vertex weight: 
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Diagrammatic mode coupling expansion leads to Dyson  
structure: 



A skeleton renormalization gives: 
 
 
                                     

          ↓ 
Keeping only this leads to a one-loop mode coupling approximation. 







On the other hand, in one-loop MC approximation:

For d>2,                may be approximated by                   .  →

t large

For d = 1,2 the mode coupling term dominates
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    The Kardar-Parisi-Zhang equations 
 
By integrating the 1d fluctuating Burgers equation over x one obtains  
the 1d KPZ equation: 

Prähofer and Spohn found an exact solution for the polynuclear growth model, 
which belongs to the KPZ universality class. 



Main results of PS, translated to the fluctuating Burgers equation: 

Exact scaling functions were obtained for the density-density 
correlation function Ŝ(k,t) (or S(x,t)). 



Main results of PS, translated to the fluctuating Burgers equation: 
 
 
 
 
 
 
 
 
 
 
 
 
In fact their results contain exactly known scaling functions for  
arbitrary combinations of small k, long times or small frequencies. 



 
 

Fluctuating hydrodynamics in one dimension 

 with 
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and derivatives of  s(x, t) and T(x,t) defined in similar way 



 
 

Linearization plus Fourier transform gives 
 
 
 
 
 
 
 
Diagonalizing gives three hydrodynamic modes, 
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The time correlation functions of the hydrodynamic modes satisfy 
linear equations involving memory kernels, of similar form as the 
density-density time correlation function for the Burgers equation. 
 
 
 
 
 
 
Like for the fluctuating Burgers equation the memory kernels may 
be expressed through a diagrammatic mode coupling expansion, but 
now there are three types of lines, corresponding to the three types 
of hydrodynamic modes and 27 vertices, corresponding to all 
combinations of lines coming in and running out. 
 
 
 



 
 

Crucial observation: Due to different propagation speeds of different  
types of modes internally only couplings of a mode σ to two modes  
with the same value of σ contribute to the dominant long time behavior. 
 
Therefore, in a comoving frame the sound-sound time correlation  
functions to leading order are of the same form as the Burgers  
density-density time correlation function.  
 
Leading long-time and small wave number results: 
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Heat  mode to leading order does not couple to a pair of heat modes, 
but only to couple of equal type sound modes. Therefore heat 
conduction coeffient behaves differently from sound damping constant, 
because pair of sound modes in resting frame oscillates as exp(σic0kt). 
 
 
Main results: 
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Mean square displacement of a tagged particle may be obtained from  
the collective dynamics through the identity 
 
 
 
 
 
 
 
Explicitly: 
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Concluding remarks: 
 
1. For typical hamiltonian systems in 1d the dominant transport  
properties can be expressed in terms of thermodynamic properties  
alone. The long time and small wave number behavior is known  
exactly in terms of the Prähofer-Spohn scaling functions. 
 
2. The corrections to the leading terms are appreciable.This is because 
couplings  of e.g. a sound mode to two opposite type sound modes or  
two heat modes decay only slightly faster with time than couplings to  
two equal type sound modes. The exponents of these correction terms  
can be obtained exactly, but the amplitudes only approximately. 
 
3. Previous mode-coupling theories by Delfini et al. give a very good  
approximation for weakly anharmonic potentials. They require  
corrections otherwise, as energy density contributes to the sound modes . 
 
 



4. Sound damping becomes almost normal if                  This happens for 

                         In fact sound attenuation is still, logarithmically,  

superdiffusive. Heat conduction becomes more strongly superdiffusive. 
No more KPZ. 
 
5. In spite of the diverging Green-Kubo integrals the transport  
coefficients in the nonlinear hydrodynamic equations need not be infinite. 
The long time tails in the current-current correlation functions are 
due to the nonlinearities in the hydrodynamic equations. Whether or  
not the transport coefficients in the nonlinear hydrodynamic equations 
are in fact divergent to my opinion is an open question. 
 
Ref.:  HvB  arXiv:1106.3298v3 [cond-mat.stat-mech],  
          PRL 108.180601 (2012) 
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