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Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.

QUIZ
(A) Gilbert Walker

(B) Ed Lorenz

(C) Rol Madden

(D) Francis Zwiers
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EVT = Going beyond the data range

What is the probability of observing data above an high threshold ?
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Hauteurs de crête (Lille, 1895-2002)

March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of exceedances

above the threshold un = 75 mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events.
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An example in three dimensions

Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Figure 1: Scatterplots of NO vs. PM10 (left), SO2 vs. PM10 (center), and SO2 vs. NO (right).
The extremes of PM10 and NO appear to have relatively strong dependence, while the extremes of
SO2 and the other two pollutants appear to have much weaker dependence.
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Typical question in multivariate EVT
What is the probability of observing data in the blue box ?
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Siméon Denis Poisson (1781-1840)
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Hauteurs de crête (Lille, 1895-2002)

Counting excesses
As a sum of random binary events, the variable Nn that counts the number of
events above the threshold un has mean n Pr(X > un)

Poisson’s theorem 1 in 1837
If un such that

lim
n→∞

n Pr(X > un) = λ ∈ (0,∞).

then Nn follows approximately a Poisson variable N.

1. Give HW
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Poisson and maxima

Counting = max

Pr(Mn ≤ un) = Pr(Nn = 0) with Mn = max(X1, . . . ,Xn)

Poisson’s at work

lim
n→∞

Pr(Mn ≤ un) = lim
n→∞

Pr(Nn = 0) = Pr(N = 0) = exp(−λ)
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Equivalences

Maxima

Counting
exceedancesTail behavior

High
quantiles

lundi 31 janvier 2011
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An univariate summary

Maxima

Counting
exceedancesTail behavior

High
quantiles

GEV

PoissonGPD

lundi 31 janvier 2011



Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral

A few studies linking EVT with geophysical extremes

Casson and Coles (1999) a Bayesian hierarchical model for wind speeds
exceedances

Stephenson and Tawn (2005) Bayesian modeling of sea-level and
rainfall extremes

Cooley et al. (2007) a Bayesian hierarchical GPD model that pooled
precipitation data from different locations

Chavez and Davison (2005) GAM for extreme temperatures (NAO)

Wang et al. (2004) Wave heights with covariates

Turkman et al. (2007), Spatial extremes of wildfire sizes

Lichenometry, Jomelli et al., 2007

Hydrology Katz et al.

Downscaling Vrac M., Kallache M., Rust H., Friedrichs P., etc

GCMs and RCMS analysis Zwiers F., Maraun D., etc

Attribution Smith R.



Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral

Limits of the univariate approach

Independence or conditional independence assumptions

Observed BHM with CI assumption

10 20 30 40

1
0

2
0

3
0

4
0

(a)

y

10

20

30

40

50

60

10 20 30 40
1
0

2
0

3
0

4
0

(b)

y

10

20

30

40

50

10 20 30 40

1
0

2
0

3
0

4
0

(c)

y

0

10

20

30

40

50

60

10 20 30 40

1
0

2
0

3
0

4
0

(d)

y

0

20

40

60

Figure 6: Comparison between one realization of the observed field and one realization of the different
models analyzed: (a) observed field; (b) conditional independence model; (c) max-stable hierarchical model
without adjustment; and (d) max-stable hierarchical model with adjustment. The same seed was used for
all the simulations.

The benefit of the max-stable hierarchical model over the conditional independence model is that the

max-stable model is able to account for local dependence. Given only fifty locations in the region, the model

seems to be able to detect the true pattern of local dependence. The 95% credible intervals for the elements

of Σ are (5.39, 8.76), (−1.28, 0.67), (5.58, 8.37) for σ11, σ12, and σ22 respectively, which include the true

values 6, 0, and 6. The fitted max-stable model provides a mechanism for producing realistic draws from the

spatial process. As Figure 6 shows, a draw from the posterior distribution of the conditional independence

model would be inappropriate and unrealistic for spatial phenomena such as rainfall or temperature which

would produce a much smoother surface.

These results are obtained from a (near) perfect model simulation; that is, the max-stable hierarchical

model fitted to the data was nearly identical to that from which the data were simulated. Nevertheless,

this simulation exercise shows that the adjusted max-stable hierarchical model is able both to flexibly model

marginal behavior that captures regional spatial affects and to capture local dependence via the max-stable

process model. In the next section we show that it also seems to perform well on real data.

5 Application

We analyze data on maximum daily rainfall amounts for the years 1962–2008 at 51 sites in the Plateau

region of Switzerland; see Figure 7. The area under study is relatively flat, the altitudes of the sites varying

22

Ribatet, Cooley and Davison (2010)
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Why is Multivariate EVT needed ?

Compute confidence intervals

Calculating probabilities of joint extreme events

Clustering of regions

Extrapolation of extremes

Downscaling of extremes

Trading time for space (for small data sets)

etc
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A fundamental question 2 for iid bivariate vector (Xi ,Yi )

Suppose that we have unit Fréchet margins at the limit

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x) = lim
n→∞

P(max(Y1, . . . ,Yn)/an ≤ x) = exp(−x−1)

with an such that
P(X > an) = 1/n

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =??

2. L. de Hann, S. Resnick
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Why is the solution so ugly ?

If

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = G(x , y)

then

G(x , y) = exp
„
−
Z 1

0
max

„
w
x
,

1− w
y

«
dH(w)

«
where H(.) such that

R 1
0 w dH(w) = 1
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Still counting

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = P(Nn(A) = 0)

x

y

A

*

*

*
* *

*

*

*
*

*
** *

*

* X_i/a_n

Y_i/a_n
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Still counting

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = P(Nn(A) = 0)

Poisson again
If

lim
n→∞

E(Nn(A)) = Λ(A),

then
lim

n→∞
P(Nn(A) = 0) = P(N(A) = 0) = exp(−Λ(A))

One of the main question

What are the properties of Λ(A) ?
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Still counting
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Back to univariate case : Fréchet margins

Poisson condition

lim
n→∞

nP(X/an ∈ Ax ) = Λx (Ax )

with
Λx (Ax ) = x−1, for Ax = [x ,∞)
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Special cases

The independent case

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =

exp(−x−1−y−1)

Hence

x−1 + y−1 = Λx (Ax ) + Λy (Ay ) = Λ(A)

The general case

Λ(A) ≤ Λx (Ax ) + Λy (Ay )



Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral
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Special cases

The independent case

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−x−1−y−1)

Hence
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Special cases

The dependent case Xi = Yi

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) =

exp(−max(1/x , 1/y))

Hence,
max(1/x , 1/y) = max(Λx (Ax ), Λx (Ay )) = Λ(A)

The general case

max(Λx (Ax ), Λx (Ay )) ≤ Λ(A)

max(Λx (Ax ), Λx (Ay )) ≤ Λ(A) ≤ Λx (Ax ) + Λy (Ay )
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Scaling property

Univariate case with Λx (Ax ) = x−1

Λx (tAx ) = t−1Λx (Ax )

Bivariate case

Λ(tA) = t−1Λ(A)?
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Going back to maxima

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−Λ(A))

= P(MX ≤ x ,MY ≤ y)

x

y

A

*

*

*
* *

*

*

*
*

*
** *

*

* X_i/a_n

Y_i/a_n
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Going back to maxima

P(MX ≤ x ,MY ≤ y) = exp(−Λ(A))

Scaling

Λ(tA) = t−1Λ(A)

is equivalent to

Max-stability

P t (MX ≤ t x ,MY ≤ t y) = (exp(−Λ(tA)))t = exp(−tΛ(tA))

= exp(−Λ(A))

= P(MX ≤ x ,MY ≤ y)
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Scaling property : an essential property of inference

t A

A

Area with data points

researchers in probability have extended the notion of Poisson random variables to a wider

class called Poisson process. This generalization allows to count random events according to

the size of a set of interest, say A. This set can be a d-dimensional object and therefore this

concept will simplify the transition from univariate EVT to multivariate EVT. A Poisson

process is characterized by the following two conditions

P [N(A) = m] =
Λm(A) exp(−Λ(A))

m!
, and (5)

P [N(A) = i & N(B) = j] = P [N(A) = i]× P [N(B) = j], if A ∩B = ∅ . (6)

Equation (6) indicates that if the sets A and B are disjoints, then N(A) the random number

of points in A is independent of N(B). Equation (5) is just another version of the Poisson

definition (1) but now the intensity depends on the set A and its measure Λ(A) = E(N(A)).

For example, Equation (4) can be expressed with these new notations as

lim
n→∞

nP (X/an ∈ A) = Λ(A), with A = (x,∞) and Λ(A) = x−α. (7)

Working with this set notation enables us to emphasize the main ingredient of EVT. By

noticing that for any positive real t, we can write from (7) that

Λ(tA) = t−αΛ(A). (8)

Coming back to the tail behavior described by (2), it is interesting to define the threshold

an that is exceeded in average once, i.e. such that

lim
n→∞

n F (an) = 1.
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Interpreting the scaling property Λ(tA) = t−1Λ(A) with ||y|| = y1 + y2

1

1

t

t

B

that y ∈ B if y1 + · · · + yd = 1. The definition of the set S is far from arbitrary. It brings to

the fore a surprising property of max-stable processes.

Before applying the scaling property (13) to the set S, we remark that for any t > 0,

tS = {tx : x/||x|| ∈ B and ||x|| > 1},

= {y : y/||y|| ∈ B and ||y|| > t}, with y = tx.

Hence, the mean measure of the set tS can be written as

Λ ({y : y/||y|| ∈ B and ||y|| > t}) = t−1Λ∗ (B)

where Λ∗(.) is the mean measure restricted to the unit sphere. There is a decoupling between

the strength of the event (the norm being greater than t) and the locations on the unit sphere

(the measure of the set B). In probability, having a product means an independence. Here

having the product t−1×Λ∗ (B) makes the measure on the unit sphere Λ∗(.) independent of

the measure that characterizes the norm ||y||. To visualize this phenomenon, one can look

at Figure ?? in the 2D case. toto If one wants to count the mean number of points occurring

in the grey set, it is sufficient to determine how many points go through the interval B.

Références

Embrechts, P., Klüppelberg, C., and Mikosch, T. : Modelling Extremal Events for Insurance

and Finance, volume 33 of Applications of Mathematics, Springer-Verlag, Berlin, 1997.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. : Modelling Extremal Events for Insurance

and Finance, volume 33 of Applications of Mathematics, Springer-Verlag, Berlin, 1997.

Sidney, I. Resnick. Extreme values, regular variation, and point processes. Springer-Verlag,

13

that y ∈ B if y1 + · · · + yd = 1. The definition of the set S is far from arbitrary. It brings to

the fore a surprising property of max-stable processes.

Before applying the scaling property (13) to the set S, we remark that for any t > 0,

tS = {tx : x/||x|| ∈ B and ||x|| > 1},

= {y : y/||y|| ∈ B and ||y|| > t}, with y = tx.

Hence, the mean measure of the set tS can be written as

Λ ({y : y/||y|| ∈ B and ||y|| > t}) = t−1Λ∗ (B)

where Λ∗(.) is the mean measure restricted to the unit sphere. There is a decoupling between

the strength of the event (the norm being greater than t) and the locations on the unit sphere

(the measure of the set B). In probability, having a product means an independence. Here

having the product t−1×Λ∗ (B) makes the measure on the unit sphere Λ∗(.) independent of

the measure that characterizes the norm ||y||. To visualize this phenomenon, one can look

at Figure ?? in the 2D case. If one wants to count the mean number of points occurring in

the grey set, it is sufficient to determine how many points go through the interval B.

y1 + y2 = 1 y1 + y2 = t
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Interpreting the scaling property Λ(tA) = t−1Λ(A)

A special case

A = {z = (x , y) : z/||z|| ∈ B and ||z|| > 1}

where ||z|| = x + y and B any set belonging to the unit sphere

A surprising property

tA = {tz : z/||z|| ∈ B and ||z|| > 1},
= {u : u/||u|| ∈ B and ||u|| > t}, with u = tz.

This implies

Λ ({u : u/||u|| ∈ B and ||u|| > t}) = t−1H (B)

where H(.) is the mean measure restricted to the unit sphere and often called
the spectral measure.

Independence between the strength of event ||z|| = x + y and the location on
the unit simplex
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Polar coordinates

2D
r = (u + v) and
θ1 = u

r , θ2 = v
r

u

v

r

r
0

0

3D
r = (u + v + w),
θ1 = u

r , θ2 = v
r , θ3 = w

r
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2D Polar coordinates

2D : INDEPENDENT CASE
r = (u + v) and
θ1 = u

r , θ2 = v
r

u

v

r

r
0

0

0.5

0.5

2D : COMPLETE DEPENDENCE
r = (u + v) and
θ1 = u

r , θ2 = v
r

u

v

r

r
0

0

1.0
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Again, back to maxima

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−Λ(A))

x

y

A

*

*

*
* *

*

*

*
*

*
** *

*

* X_i/a_n

Y_i/a_n
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Back to maxima

How to express A in

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = exp(−Λ(A))

Changing coordinates : r = u + v and w = u/(u + v)

(u, v) /∈ A ⇔ u < x and v < y ,

⇔ r < x/w and r < y/(1− w),

⇔ r < min(x/w , y/(1− w))

Computing Λ(A)

Λ(A) =

Z
w∈[0,1]

Z
r>min(x/w,y/(1−w))

r−2dH(w)

=

Z
w∈[0,1]

max(w/x , (1− w)/y)dH(w)
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Rewriting the counting rate in function of H(dw)

Λ(A) =

Z 1

0
max

„
w
x
,

1− w
y

«
H(dw)

Scaling property checked

Λ(tA) = t−1Λ(tA)
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Max-stable vector

If

lim
n→∞

P(max(X1, . . . ,Xn)/an ≤ x ,max(Y1, . . . ,Yn)/an ≤ y) = G(x , y)

then

− log G(x , y) =

Z 1

0
max

„
w
x
,

1− w
y

«
dH(w)

where H(.) such that
R 1

0 w dH(w) = 1
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Max-stable vector properties

G(x , y) = exp
»
−
Z 1

0
max

„
w
x
,

1− w
y

«
dH(w)

–
and H(.) such that

R 1
0 w dH(w) = 1

Max-stability

Gt (tx , ty) = G(x , y), for any t > 0

Marginals : unit-Fréchet

G(x ,∞) = G(∞, x) = exp(−1/x)
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A multivariate summary

Maxima

Counting
exceedancesTail behavior

High
quantiles

Max-stability

Scaling propertyRegularly varying

Gt(tz) = G(z), for any

Λ(tAz) = t−1 Λ(Az).
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A quick summary about the basics

Learned lessons

Multivariate maxima can be handled with Poisson counting processes

“Polar coordinates” allows to see the independence between the strength
of the event and the dependence structure that lives on the simplex

The dependence structure has not explicit expressions (in contrast to the
margins and to the Gaussian case)

Max-stable property = scaling property for the Poisson intensity

Conceptually easy to go from the bivariate to the multivariate case
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Remaining questions

How to make the inference of the dependence structure ?

How can we use this dependence structure ?

No easy regression scheme (how to do D&A, see Francis’ talk) ?
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Inference

Strategies for either the marginal behavior or the dependence

Parametric : (+) Reduce dimensionality & easy to deal with covariates (-)
impose a parametric form, model selection needed

Non-parametric : (+) General without strong assumptions, (-) no practical
for large dimension (curse of dimensionality), difficult to insert covariates

Techniques

Maximizing the likelihood : (+) easy to integrate covariates (-) impose a
parametric form, no straightforward for large dimension

Bayesian inference : (+) easy to insert expert knowledge, (-) no
straightforward for large dimension (slow)

Methods of moments : (+) fast and simple to understand, can be
non-parametric (-) no straightforward to have covariates
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Hourly precipitation in France, 1992-2011 (Olivier Mestre)
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Our game plan to handle extremes from this big rainfall dataset

Spatial scale
Large (country) Local (region)

Problem Dimension reduction Spectral density
in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses

Method Clustering algorithms Mixture of
for maxima Dirichlet

Without imposing a given parametric structure
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Clustering of maxima (joint work with E. Bernard, M. Vrac and O. Mestre)

Task 1
Clustering 92 grid points into around 10-20 climatologically homogeneous
groups wrt spatial dependence
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Clusterings

Challenges

Comparing apples and oranges

An average of maxima (centroid of a cluster) is not a maximum

variances have to be finite

Difficult interpretation of clusters

Questions

How to find an appropriate metric for maxima ?

How to create cluster centroids that are maxima ?
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A central question (assuming that P [M(x) < v ] = P [M(y) < u] = exp(−1/u))

P [M(x) < u, M(y) < v ] = exp

[
−
∫ 1

0
max

(
w
u

,
1− w

v

)
dH(w)

]
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θ = Extremal coefficient

P [M(x) < u, M(y) < u] = (P [M(x) < u])θ

Interpretation
Independence⇒ θ = 2

M(x) = M(y)⇒ θ = 1

Similar to correlation coefficients for Gaussian but ...

No characterization of the full bivariate dependence
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A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

d(x , y) =
1
2

E |F y (M(y))− F x (M(x))|

If M(x) and M(y) bivariate GEV, then

extremal coefficient =
1 + 2d(x , y)

1− 2d(x , y)
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Clusterings

Questions

How to find an appropriate metric for maxima ?

How to create cluster centroids that are maxima ?



Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral

Partitioning Around Medoids (PAM) (Kaufman, L. and Rousseeuw, P.J. (1987))
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PAM : Choose K initial mediods
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PAM : Assign each point to each closest mediod
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PAM : Recompute each mediod as the gravity center of each cluster
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PAM : continue if a mediod has been moved
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PAM : Assign each point to each closest mediod
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PAM : Recompute each mediod as the gravity center of each cluster
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!! !"#$%&'()*+,-"(.-/0)+

1234567887+!57992!27:8+

" +

si =
bi − ai

max(ai, bi)
ai

bi

i

ai � bi, si ≈ 1 →Well classified
ai ∼ bi, si ≈ 0 → Neutral
ai � bi, si ≈ −1 → Badly classified
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Sil. coeff. for K= 15

Average silhouette width :  0.09
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Applying the kmeans algorithm to maxima (15 clusters)
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Summary on clustering of maxima

Classical clustering algorithms (kmeans) are not in compliance with EVT

Madogram provides a convenient distance that is marginal free and very
fast to compute

PAM applied with mado preserves maxima and gives interpretable
results

R package available on my web site
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Project : Dimension reduction (via clustering ?)

Are clusters of maxima change over time, say pre-industrial, today,
future ?

How robust are clusters of maxima in climate models (is it model
sensitive) ?

Are clusters of maxima different from classical patterns (EOF) ?

PAM applied with mado preserves maxima and gives interpretable
results

Can we compute the FAR within a given cluster ?

What about the marginal behavior (the intensity) ?

Data = field of temperature yearly maxima or precipitation (per season ?)
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Methods of moments in a non-stationary spatial case 3

4. Discussion and Conclusions

A fast, simple, and flexible method based on probability weighted moments and kernel regression has
been proposed to model covariate-dependent extremes. It is computationally inexpensive and can be
applied to very large data sets. It does not assume any a priori behavior of the scale parameter, but it
assumes a constant shape parameter. We tested our approach on simulations and heavy precipitation in
Switzerland. The Swiss case study highlights the applicability of the method and its potentiality. Our results
are coherent with recent studies. Finally, the method is freely available as an R package that can be
requested by email.
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Methods of moments in a non-stationary spatial case 4

Probability Weighted Moments (PWM), see Hoskings and colleagues)

µr = E
h
ZG

r
(Z )
i

PWM for the GPD in the IID case

µr =
σ

(1 + r)(1 + r − ξ)
,

PWM and GPD parameters for ξ < 1.5

σ =
2.5µ1.5µ1

2µ1 − 2.5µ1.5
and ξ =

4µ1 − (2.5)2µ1.5

2µ1 − 2.5µ1.5
.

An estimation of µr can be obtained by noticing that Gσ,ξ(Z ) follows a
uniform distribution on [0, 1].

4. Naveau, Toreti, Smith, Xoplaki, WRR, 2014
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Methods of moments in a non-stationary spatial case

Non-stationary case with Y (x) followed a GP(σ(x), ξ)

Now σ(x) can vary according to a covariate x ,

µr (x) = E[Y (x)G
r
σ(x),ξ(Y (x))],

A simple rewriting

µr (x) = σ(x)
1

(1 + r)(1 + r − ξ)
= σ(x)E[ZG

r
1,ξ(Z )],

where Z follows GP(1, ξ) distribution.

A new system

ξ =
(1 + s)2 − (1 + r)2αrs

(1 + s)− (1 + r)αrs
and σ(x) = µ0(x)(1− ξ),

with

αrs =
E[ZG

r
1,ξ(Z )]

E[ZG
s
1,ξ(Z )]

.

The only variables depending on x are σ(x) and µ0(x).
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Methods of moments in a non-stationary spatial case

Non-stationary case with Y (x) followed a GP(σ(x), ξ)

Suppose that bµ0(x) and α̂ represent any estimators for µ0(x) and αrs,

bξ =
9− 4α̂
3− 2α̂

and bσ(x) = bµ0(x)(1− bξ)

A kernel regression approach for bµ0(x)

Let K be a weighting Kernel, e.g. a standard Gaussian pdf, we set

bµ0(x) =
1P

i K (x − x i )

nX
i=1

Y (x i ) K (x − x i ).

Estimation of αrs

Replace the unobserved Zi ’s by their estimated renormalized version
Z ′i = Y (x i )/bµ0(x i ). Then, simply use your favorite inference PWM methods
to estimate E[Z ′G′

r
1,ξ(Z ′)] for r = 1, 2.
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Simulations
smoother, the unobserved Zi’s can
be replaced by their estimated
renormalized version
Z0
i5YðX iÞ=l̂0ðX iÞ. At this stage, one

can simply use his/her favorite
inference PWM method to estimate
E½Z0G0 r

1;nðZ0Þ$ for r51; 2. In this
exercise, they are inferred by
using the U-statistic approach of
Furrer and Naveau [2007] and
applying a triweight kernel [e.g.,
H€ardle, 1991]. Thus, the developed
inference scheme is very similar to
the classical PWM method. The
two new ingredients are the use of
Kernel regression for estimating l̂0

ðXÞ and the new system of equa-
tions to be solved. The proposed
approach (hereafter, Kernel-PWM)
can be summarized by the follow-
ing steps:

1. Compute l̂0ðxÞ, via equation (8);

2. calculate the vector
fz0ig5fyðx iÞ=l̂0ðx iÞg;

3. compute the two PWMs r51; 2 from the sample fz0ig and then set â as the ratio of those PWMs;

4. derive r̂ðxÞ and n̂ from equation (7).

To get confidence intervals, new samples can be generated under the estimated values and the proposed
fast four-step algorithm repeated to explore the sampling variability. From a theoretical point of view, the
statistical properties of l̂0ðXÞ can be directly obtained from the classical Kernel regression literature [Wand
and Jones, 1995]. As for any kernel-based approach, the choice of the bandwidth remains a delicate task.
Still, classical approaches for bandwidth selection can be used in our procedure, but caution is necessary
when the shape parameter is large.

3. Analysis of Nonstationary Excesses

To illustrate the proposed procedure, we simulate one nonstationary sequence ðYðx1Þ; . . . ; YðxmÞÞ of length
m5 1000 distributed according to GPðrðxÞ; nÞ, where n50:2 and rðxÞ is the combination of a periodic and
an exponential signal, see the solid black line (x axis) in Figure 1. The inferred r̂ðxÞ reproduces reasonably
well the true behavior of rðxÞ and the gray 90% confidence interval contains the true value. Some boundary
effects (especially with higher values of the scale parameter) affect the estimation. The true shape parame-
ter is clearly within the inferred boxplot. To validate this first example, we repeat this experiment 1000
times. Figure 2 displays the shape parameter and the 90% confidence interval for each simulation. The verti-
cal red lines on the x axis correspond to the coverage probability occurrences and, as expected for a 90%
confidence level for a thousand replicas, around 100 (precisely 136) false positive have been detected. To
apply our method to a real data set, we focus on extreme precipitation in Switzerland recorded at 220 sta-
tions from 2001 to 2010 in autumn. Heavy precipitation is defined as being above the 90% quantile at each
location. We assume that these excesses follow a GP distribution with a constant shape parameter. This lat-
ter hypothesis has been checked by fitting individually each station and testing if these values were signifi-
cantly different from a countrywide parameter. The spatially varying scale parameter estimates are
displayed in Figure 3. The top, middle, and bottom rows correspond to the 5%, 50%, and 95% values,
respectively. To assess the influence of the bandwidth, the columns represent three different bandwidths,
0.3, 0.5, and 0.7, respectively. Basically, the results are robust with respect to these three bandwidth choices.
We recognize the classical spatial pattern of heavy rainfall in Switzerland with larger values in Ticino,

Figure 1. For a GPDðrðxÞ; nÞ, the solid black line represents the true scale parameter
rðxÞ in function of x (x axis). The shape parameter is constant and equals to 0.2 (right
axis). From one realization, the boxplot and the gray 90% confidence intervals repre-
sent the estimated shape and scale (left axis) obtained by resampling, respectively.

Water Resources Research 10.1002/2014WR015431
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Simulations

especially in the southwestern part of
this area, and lower values over the
northern part. With respect to the
shape parameter, its estimate is
around 0.12 with a 90% confidence
interval of ½2:67; :58". The confidence
range is large because our database
only covers 10 years. Still, our inferred
shape parameter corresponds to esti-
mates obtained by MeteoSwiss
[Umbricht et al., 2013] for longer time
periods and by Papalexiou and Kout-
soyiannis [2013, see their Figure 13]. In
a sense, we have traded time with
space and, even with a short time
length, our estimates are consistent
with past studies. One advantage of a
Kernel-based approach is the possibil-

ity to extrapolate return levels. For our Swiss example, we first need to infer threshold values at unobserved
locations. This is undertaken by universal kriging [e.g., Wackernagel, 2003] using elevation as external drift.
The 50 year return levels map in Figure 4 emphasizes the complex spatial structure in Ticino and reveals the
dryer belt in the south-west. This feature is not highlighted in Figure 4.10 of the recent MeteoSwiss report
[Umbricht et al., 2013] because of the lack of spatial coverage in this region. This requires further investiga-
tion [see also Huser and Davison, 2014].

Figure 3. Inferred scale parameter obtained from heavy precipitation (i.e., threshold at the 90% quantile of wet days) recorded at 220 sta-
tions in Switzerland from 2001 to 2010 in autumn. The top, middle, and bottom rows correspond to the 5%, median, and 95% values,
respectively. The columns from the left represent three different bandwidths, 0.3, 0.5, and 0.7, respectively.

Figure 2. Estimated shape parameter (y axis) from 1000 replicas (x axis) based on
the setup described in Figure 1. The vertical red lines correspond to the samples
outside of the estimated 90% coverage probability. As expected for 1000 replicas,
around 100 false positive (red lines) occurrences are detected.

Water Resources Research 10.1002/2014WR015431

NAVEAU ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5
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Daily precipitation recorded in Switzerland 2001-2010 Autumn (u = 90th)

especially in the southwestern part of
this area, and lower values over the
northern part. With respect to the
shape parameter, its estimate is
around 0.12 with a 90% confidence
interval of ½2:67; :58". The confidence
range is large because our database
only covers 10 years. Still, our inferred
shape parameter corresponds to esti-
mates obtained by MeteoSwiss
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[Umbricht et al., 2013] because of the lack of spatial coverage in this region. This requires further investiga-
tion [see also Huser and Davison, 2014].
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Figure 2. Estimated shape parameter (y axis) from 1000 replicas (x axis) based on
the setup described in Figure 1. The vertical red lines correspond to the samples
outside of the estimated 90% coverage probability. As expected for 1000 replicas,
around 100 false positive (red lines) occurrences are detected.
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Heavy rainfall in Switzerland

Pros and cons about the inference

Parametric structure with a GPD : (+) Reduce dimensionality & easy to
deal with covariates (-) impose a parametric form, model selection
needed

Non-parametric for the scale parameter

(+) Fast and conceptually easy (method of moments)

(-) Independent assumption

(-/+) Constant shape parameter
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Bayesian inference with hidden structures

Notations
Model = statistical model

Data y = (y1, . . . , yn)

Hidden signal x = (x1, . . . , xn)

Problems at hand
Model [y |x ], the likelihood distribution

Choose [x ] the prior

Model [xt |xt−1], the dynamical part of the unobserved system

Find [x |y ] the inverse probability (posterior)
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A classical and old problem

The problem
Find [x |y ] the inverse probability (posterior)

Different names
Statistical data assimilation

Statistical inverse problem

Latent variables

Filtering methods (Kalman, particles, etc)

State-space modeling

Bayesian hierarchical model

Mixed models
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Pierre Simon Laplace (1749-1827)

“L’analyse des probabilités
assigne la probabilité de ces
causes, et elle indique les
moyens d’accroitre de plus
en plus cette probabilité.”
“Essai Philosophiques sur
les probabilités” (1774)
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Pierre Simon Laplace (1749-1827)

“If an event can be produced by a number of n different causes, then the
probabilities of the causes given the event ... are equal to the probability of
the event given that cause, divided by the sum of all the probabilities of the
event given each of the causes.”

P(causei |event) =
P(event|causei )× P(causei )Pn
j=1 P(event|causej )× P(causej )
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Bayes’ formula = calculating conditional probability

[x|y] ∝ [y|x]× [x]

1701( ?)- 1761 “An essay
towards solving a Problem in
the Doctrine of Chances”
(1764)
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Bayesian vs frequentist statistics

[x|y] ∝ [y|x]× [x]

Frequentist statistics

Trust your data and your
model

Find estimators of [x |y ] by
maximizing the likelihood
[y |x ] (if necessary,
penalize it with prior [x ])

Bayesian statistics

Find and trust expert information
(independent of our data) through
prior [x ]

Trust your data and your model

Update your expert information via the
data, i.e. find posterior [x |y ] by using
[x |y ] ∝ [y |x ][x ]
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Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.
QUIZ

(A) Gilbert Walker
(B) Ed Lorenz
(C) Rol Madden
(D) Francis Zwiers
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ily available. These equations still are popular (e.g.,
used in S-PLUS) for estimating partial autocorrela-
tions and, through a generalization (Whittle, 1963,
page 101), for fitting multiple AR processes.

But how many statisticians (or, for that matter, at-
mospheric scientists) are aware that the “Walker” in
both terms refers to the same individual and, more-
over, that these two appellations arose in conjunction
with the same research? The “Walker” in question is
none other than Sir Gilbert Thomas Walker (Figure 3).
While stationed in India as Director General of Obser-
vatories of that country’s meteorological department,
Walker became preoccupied with attempts to forecast
the monsoon rains, whose failure could result in wide-
spread famine (Davis, 2001). It was in the course of
this search for monsoon precursors that he identified
and named the “Southern Oscillation” (Walker, 1924).

At that time, the approach most prevalent in the
statistical analysis of weather variables was to search
for deterministic cycles through reliance on harmonic
analysis. Such cycles included those putatively as-

FIG. 3. Photograph of Sir Gilbert T. Walker (source: Royal
Society; Taylor, 1962).

sociated with sunspots, the hope being to provide a
method for long-range weather or climate forecast-
ing. Walker was quite skeptical of these attempts, es-
pecially given the lack of statistical rigor in identify-
ing any such periodicities. Eventually, he suggested the
alternative model of quasiperiodic behavior (Walker,
1925). Meanwhile, the prominent British statistician
George Udny Yule devised a second-order autoregres-
sive [AR(2)] process to demonstrate that the sunspot
time series was better modeled as a quasiperiodic phe-
nomenon than by deterministic cycles (Yule, 1927). To
determine whether the SO exhibits quasiperiodic be-
havior, Walker was compelled to extend Yule’s work
to a general pth-order autoregressive [AR(p)] process
(Walker, 1931).

The focus of the present paper is on the connec-
tion between the meteorological and statistical aspects
of Walker’s research. First some background about
Walker’s research on what he called “world weather”
is provided. Then the development of the Yule–Walker
equations is treated, including a reanalysis of the in-
dex of the SO originally modeled by Walker. Reaction
to his research, contemporaneously and in subsequent
years and both in meteorology and in statistics, is char-
acterized. For historical perspective, the present state
of stochastic and dynamic modeling of the SO is briefly
reviewed, examining the extent to which his work has
stood the test of time. Finally, the question of why his
work was so successful is considered in the discus-
sion section. For a more formal, scholarly treatment of
Walker’s work, in particular, or of the ENSO phenom-
enon, in general, see Diaz and Markgraf (1992, 2000)
and Philander (1990) (in addition to the references on
ENSO already cited in this section).

2. WALKER’S RESEARCH ON WORLD WEATHER

2.1 Training and Career

In grammar school, Sir Gilbert Thomas Walker, who
lived from 1868 to 1958, “showed an early interest in
arithmetic and mechanics” (Taylor, 1962, page 167).
After being educated under a mathematical scholar-
ship at Trinity College, University of Cambridge, he
remained there, assuming an academic career as Fel-
low of Trinity and Lecturer. Walker was a “mathemati-
cian to his finger-tips” (Simpson, 1959, page 67) and
was elected Fellow of the Royal Society in 1904 on the
strength of his research in pure and applied mathemat-
ics, including “original work in dynamics and electro-
magnetism before ever he turned his thoughts to me-
teorology” (Normand, 1958). Among his first papers
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of stochastic and dynamic modeling of the SO is briefly
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After being educated under a mathematical scholar-
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Bayesian approach

[x|y] ∝ [y|x]× [x]

Advantages

Integration of expert
information via prior [x ]

Deals with the full
distribution

Non-Gaussian

Non-linear

Drawbacks

Integration of expert information via prior
[x ]

Complex algorithmic techniques (MCMC,
particle-filtering)

Can be slow and not adapted for large
data sets
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Daily precipitation (April-October, 1948-2001, 56 stations)
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Precipitation in Colorado’s front range

Data

56 weather stations in Colorado (semi-arid and mountainous region)

Daily precipitation for the months April-October

Time span = 1948-2001

Not all stations have the same number of data points

Precision : 1971 from 1/10th of an inche to 1/100

D. Cooley, D. Nychka and P. Naveau, (2007). Bayesian
Spatial Modeling of Extreme Precipitation Return Levels.
Journal of The American Statistical Association.
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Thresholding : the Generalized Pareto Distribution (GPD)

P{R−u > y |R > u} =

„
1 +

ξ y
σu

«−1/ξ

+

Vilfredo Pareto : 1848-1923

Born in France and trained as an
engineer in Italy, he turned to the
social sciences and ended his
career in Switzerland. He
formulated the power-law
distribution (or ”Pareto’s Law”), as
a model for how income or wealth
is distributed across society.
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Our main assumptions

Process layer : The scale and shape GPD parameters (ξ(x), σ(x)) are
random fields and result from an unobservable latent spatial process

Conditional independence : precipitation are independent given the GPD
parameters

Our main variable change

σ(x) = exp(φ(x))
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Hierarchical Bayesian Model with three levels

P(process, parameters|data) ∝ P(data|process, parameters)

×P(process|parameters)

×P(parameters)

Process level : the scale and shape GPD parameters (ξ(x), σ(x)) are hidden
random fields
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Our three levels

A) Data layer := P(data|process, parameters) =

Pθ{R(xi)− u > y |R(xi) > u} =

„
1 +

ξi y
expφi

«−1/ξi

B) Process layer := P(process|parameters) :

e.g. φi = α0 + α1 × elevationi + Gaussian (0, β0 exp(−β1||xk − x j ||))

and ξi =


ξmoutains, if x i ∈ mountains
ξplains, if x i ∈ plains

C) Parameters layer (priors) := P(parameters) :
e.g. (ξmoutains, ξplains) Gaussian distribution with non-informative mean and
variance
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Bayesian hierarchical modelingNotre modèle Bayesien hiérarchique
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Climate spaceCooley, Nychka, and Naveau: Modeling of Extreme Precipitation Return Levels
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Figure 3. Translation of Points in Longitude/Latitude Space (a) (elevation in meters) to Points in Climate Space (b). Letters correspond to selected
station locations and represent foothill cities (C), plains (P), Palmer Divide (D), Front Range (F), mountain valley (V), and high elevation (H).

that describes its relationship with the latent spatial process.
Drawing on standard geostatistical methods, we model φ(x)

as a Gaussian process with E[φ(x)] = µφ(x) and cov(φ(x),

φ(x′)) = kφ(x,x′). The mean µφ(x) is a function of parame-
ters αφ and the covariates:

µφ(x) = fφ(αφ, covariates). (8)

The function f is changed easily to allow different relationships
with the covariates, and an example of one of the models tested
is µφ(x) = αφ,0 + αφ,1 × (elevation). Covariance is a function
of the distance between stations and parameters βφ , and it is
given by

kφ(x,x′) = βφ,0 × exp(−βφ,1 × ‖x − x′‖), (9)

which corresponds to an exponential variogram model. The pa-
rameters βφ,0 and 1/βφ,1 are sometimes called the “sill” and
“range” in the geostatistics literature. Our covariance model as-
sumes the process is isotropic and stationary; we found it im-
possible to detect any nonstationarity or anisotropy with only
56 stations. We choose to work with exponential models be-
cause of their simplicity and because they assume no level of
smoothness in the latent process.

In contrast to the transformed scale parameter, we are less
certain of the shape parameter’s sensitivity to regional variables.
Because the shape parameter is more difficult to estimate than
the scale parameter, we start to model ξ(x) as a single value and

increasingly add complexity until we have a reasonable fit. We
model the shape parameter in three ways: (a) as a single value
for the entire study region with a Unif(−∞,∞) prior; (b) as
two values, one for the mountain stations and one for the plains
stations each with Unif(−∞,∞) priors; and (c) as a Gaussian
process with structure similar to that of the prior for φ(x).

Modeling the GPD parameters φ(x) and ξ(x) as before, data
at the station locations provide information about the latent spa-
tial process that characterizes these parameters. Hence, the sec-
ond piece in (5) is

p2(θ1|θ2) = 1√
(2π)s|&| exp

[
−1

2
(φ − µ)T&−1(φ − µ)

]

× pξ (ξ |θ ξ ), (10)

where µ is a vector defined by (8) evaluated at the covari-
ates of the locations xi, & is the covariance matrix generated
by (9) at the station locations (in either the traditional or climate
space), the density function pξ comes from the prior distribution
we choose for the shape parameter ξ with parameters θ ξ , and
θ2 = [αφ,βφ, θ ξ ]T .

3.1.3 Priors. In the third hierarchical layer, we assign pri-
ors to the parameters αφ , βφ , and θ ξ that characterize the latent
process. We assume each parameter in this layer is independent
of the others.

We have no prior information on how the GPD parameter φ
is related to the covariates, and thus we choose uninformative

foothill cities(C),plains(P),Palmer Divide(D),Front Range(F),mountain valley(V),and high elevation(H)
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Priors for the spatial compoment
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priors for the regression parameters αφ . Because a proper pos-
terior is obtained even with an improper prior (Banerjee, Carlin,
and Gelfand 2004), we set αφ,i ∼ Unif(−∞,∞) for all models.

Setting priors for βφ is more difficult. Berger, DeOiveira,
and Sanso (2001) and Banerjee et al. (2004) cautioned that im-
proper priors for the sill and range parameters generally result
in improper posteriors. Banerjee et al. (2004) suggested that the
safest strategy is to choose informative priors. In our applica-
tion, the parameters βφ describe the spatial structure of the log-
transformed scale parameter of the GPD, a quantity for which
it is difficult to elicit prior information.

We rely on knowledge of the space in which we model to set
priors for βφ,1. When modeling in the latitude/longitude space,
we use Unif[.075, .6] as our prior for βφ,1, which sets the max-
imum range of the exponential variogram model to be approx-
imately 40 miles and the minimum range to be approximately
5 miles. When modeling in the climate space whose domain
is approximately [1,4] × [2,6] units (Fig. 3), we set the prior
for βφ,1 to be Unif[6/7,12], which yields an effective range of
approximately .25 to 3.5 units.

Because the values of φ are not observed, we have little other
than our dataset on which to base our prior for βφ,0, which con-
trols the sill of the variogram model. Using maximum likeli-
hood (ML), we fit a GPD to each station independently and
then fit an empirical variogram to the φ̂’s. Based on the vari-
ogram, we choose a prior for βφ,0, which gives a wide enve-
lope around the variogram of the ML estimates. Because we
recognize that this is a nontraditional Bayesian methodology,
we choose Unif[.005, .09] as the prior, which gives a very wide
envelope and which can be used for all models tested (Fig. 4).

Even though we use proper priors for the spatial parame-
ters βφ , Berger et al. (2001) cautioned that simple truncation of
the parameter space (as we have done) still leads to difficulties
with posteriors. They recommended a careful sensitivity study
with respect to the parameter bounds. Such a study is reported
in Section 4.2.

For the shape parameter ξ(x), only when modeled as a
Gaussian process are there parameters that must be assigned

priors in level 3. In this case, ξ(x) has regression coefficients αξ

and spatial parameters βξ . As with φ, we use Unif(−∞,∞) for
the priors on αξ and use empirical information to determine ap-
propriate priors for β

ξ
. In the climate space, the prior for βξ,0

was Unif(.001, .020) and the prior for βξ,1 was Unif(1,6).
With the priors set as before, the third piece of (5) is

p3(θ2) = pαφ (αφ) × pβφ (βφ) × pαξ (αξ )

× pβξ (βξ ) ∝ 1 × pβφ (βφ) × pβξ (βξ ), (11)

and the model for threshold exceedances is completely speci-
fied.

3.2 Exceedance Rate Model

To estimate return levels, we not only need to estimate the
GPD parameters but also must estimate ζu, the rate at which
a cluster of observations exceeds the threshold u. Because we
have temporally declustered our data, rather than being the
probability that an observation exceeds the threshold, ζu is ac-
tually the probability that an observation is a cluster maximum.
However, we will continue to refer to ζu as the exceedance rate
parameter.

Because we chose the threshold to be 1.4 cm (.55 inches) for
all stations, the exceedance rate parameter ζ.55 (henceforth ζ )
will differ at each station and must be modeled spatially. We
let ζ(x) be the exceedance rate parameter for the location x. As
with the GPD parameters, we assume there is a latent spatial
process that drives the exceedance probability.

Our model to obtain inference about ζ(x) is a hierarchi-
cal model, again with data, process, and prior layers. At the
data layer of this model, we assume that each station’s number
of declustered threshold exceedances Ni is a binomial random
variable with mi (total number of observations) trials each with
a probability of ζ(xi) of being a cluster maximum.

The process layer of our hierarchy is quite similar to that
of the GPD parameter φ(x). We follow the methodology of
Diggle, Tawn, and Moyeed (1998) and transform ζ(x) us-
ing a logit transformation and then model the transformed
parameters as a Gaussian process with E[ζ(x)] = µζ (x) and

(a) (b)

Figure 4. Empirical Variogram Estimates in Traditional Space (a) and Climate Space (b). Binned variogram estimates (◦) and the SSE-minimizing
variogram ( ——) are plotted for the MLE-estimated φ parameters. The dashed lines denote the envelope of possible variograms given the priors
for βφ,0 (sill) and βφ,1 (1/range).

Traditional Space (a) & Climate Space (b). The dashed lines denote the envelope of possible variograms given the sill and range priors
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Model selection
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the same manner as φ when modeled spatially. The exceedance
rate model is handled analogously.

We ran three parallel chains for each model. Each simula-
tion consisted of 20,000 iterations, the first 2,000 iterations
were considered to be burn-in time. Of the remaining itera-
tions, every 10th iteration was kept to reduce dependence. We
used the criterion R̂ as suggested by Gelman (1996) to test for
convergence and assumed that values below the suggested crit-
ical value of 1.1 imply convergence. For all parameters of all
models, the value of R̂ is below 1.05 unless otherwise noted in
Section 4.1.

3.4 Spatial Interpolation and Inference

Our goal is to estimate the posterior distribution for the return
level for every location in the study region. From (3), zr(x) is a
function of the GPD parameters φ(x), ξ(x), and the (indepen-
dent) exceedance rate parameter ζ(x); thus, it is sufficient to
estimate the posteriors of these processes. Our method allows
us to draw samples from these distributions, which in turn can
be used to produce draws from zr(x).

To illustrate our interpolation method, consider the log-
transformed GPD scale parameter of the exceedance model. We
begin with values for φ, αφ , and βφ from which we need to
interpolate the value of φ(x). We have assumed that the para-
meters αφ and βφ , respectively, determine the mean and co-
variance structure of the Gaussian process for φ(x). Using the
values of αφ and βφ , we are able to draw from the conditional
distribution for φ(x) given the current values of φ. Doing this
for each iteration of the MCMC algorithm provides draws from
the posterior distribution of φ(x).

We do the same for the exceedance rate parameter ζ(x) and
for the GPD shape parameter ξ(x) if it is modeled spatially.
Pointwise means are used as point estimates for each of the pa-
rameters (Fig. 7). The entire collection of draws from the pos-
terior distributions of φ(x), ξ(x), and ζ(x) are used to produce
draws from the return level posterior distribution. The point-
wise quantiles and pointwise means of the posterior draws are
used for the return level maps (Figs. 8 and 9).

4. RESULTS

4.1 Model Selection and Map Results

As in a regression study, we test both the threshold ex-
ceedance and the exceedance rate models with different covari-
ates. To assess model quality, we use the deviance information
criterion (DIC) (Spiegelhalter, Best, Carlin, and van der Linde
2002) as a guide. The DIC produces a measure of model fit D̄
and a measure of model complexity pD and sums them to get
an overall score (lower is better). As the DIC scores result from
the realizations of an MCMC run, there is some randomness
in them, and, therefore, nested models do not always have im-
proved fits. We do not solely rely on the DIC to choose the most
appropriate model. Because our project is product oriented (i.e.,
we want to produce a map), we also considered the statistical
and climatological characteristics of each model’s map, as well
as their uncertainty measures.

We first discuss the model for threshold exceedances. Ta-
ble 1 shows the models tested and their corresponding DIC
scores. We begin developing models in the traditional lat-
itude/longitude space and start with simple models where

Table 1. Several of the Different GPD Hierarchical Models Tested and
Their Corresponding DIC Scores

Baseline model D̄ pD DIC

Model 0: φ = φ 73,595.5 2.0 73,597.2
ξ = ξ

Models in latitude/longitude space D̄ pD DIC

Model 1: φ = α0 + εφ 73,442.0 40.9 73,482.9
ξ = ξ

Model 2: φ = α0 + α1(msp) + εφ 73,441.6 40.8 73,482.4
ξ = ξ

Model 3: φ = α0 + α1(elev) + εφ 73,443.0 35.5 73,478.5
ξ = ξ

Model 4: φ = α0 +α1(elev)+α2(msp)+εφ 73,443.7 35.0 73,478.6
ξ = ξ

Models in climate space D̄ pD DIC

Model 5: φ = α0 + εφ 73,437.1 30.4 73,467.5
ξ = ξ

Model 6: φ = α0 + α1(elev) + εφ 73,438.8 28.3 73,467.1
ξ = ξ

Model 7: φ = α0 + εφ 73,437.5 28.8 73,466.3
ξ = ξmtn,ξplains

Model 8: φ = α0 + α1(elev) + εφ 73,436.7 30.3 73,467.0
ξ = ξmtn,ξplains

Model 9: φ = α0 + εφ 73,433.9 54.6 73,488.5
ξ = ξ + εξ

NOTE: Models in the climate space had better scores than models in the longitude/latitude
space. ε· ∼ MVN(0, &), where [σ ]i, j = β·, 0 exp(−β·, 1‖xi − xj ‖).

φ(x) is modeled as in Section 3.1 and ξ(x) is modeled as a
single value throughout the region. We allow the mean of the
scale parameter to be a linear function of elevation and/or MSP
(Models 2, 3, and 4). To our surprise, we find that elevation
outperforms MSP as a covariate and, in fact, adding MSP does
not improve the model over including elevation alone. Unfor-
tunately, the maps produced by these simple models in the
traditional space seem to inadequately describe the extreme
precipitation. For example, the point estimate maps for φ(x)

show relatively high values around the cities of Boulder and
Fort Collins but do not show similar values for the stationless
region between the cities despite that it has a similar climate
and geography.

When we perform the analysis for the climate space, we ob-
tain better results. Both the model fit score and the effective
number of parameters are lower in the climate space, yield-
ing lower DIC scores for corresponding models (e.g., Models
1 and 5 or Models 3 and 6). However, in the climate space,
adding elevation (or MSP) as a covariate does not seem to im-
prove the model as these covariates are already integrated into
the analysis as the locations’ coordinates. Most important, when
the points are translated back to the original space, we obtain
parameter estimate maps that seem to better agree with the ge-
ography.

We then begin to add complexity to the shape parameter ξ(x).
Allowing the mountain stations and plains stations to have
separate shape parameter values slightly improves model fit
(Model 7), but a fully spatial model for ξ(x) does not improve
model fit enough to warrant the added complexity (Model 9).
Model 7 is chosen as the most appropriate model tested based
not only on its DIC score but also on the posteriors for the
parameters ξmtn and ξplains. Selected posterior densities from
Model 7 are plotted in Figure 6. The left plot in Figure 7 shows
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Return levels posterior mean
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Posterior quantiles of return levels (.025, .975)
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Take-home messages for this rainfall application

Positive points
Take advantage of Extreme Value Theory

Spatial dependencies are captured within the process layer

The hierarchical Bayesian framework provides a rich and flexible family
for modeling complex data sets

Drawbacks
Computer-intensive implementation (MCMC)

Difficulty to set the “spatial” priors

Conditional independence of the observations
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Hourly precipitation in France, 1992-2011 (Olivier Mestre)
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Our game plan to handle extremes from this big rainfall dataset

Spatial scale
Large (country) Local (region)

Problem Dimension reduction Spectral density
in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses

Method Clustering algorithms Mixture of
for maxima Dirichlet

Without imposing a given parametric structure
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Our game plan to handle extremes from this rainfall dataset

Spatial scale
Large (country) Local (region)

Problem Dimension reduction Spectral density
in moderate dimension

Data Weekly maxima Heavy hourly rainfall
of hourly precipitation excesses

Method Clustering algorithms Mixture of
for maxima Dirichlet
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Back to the cluster
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Bayesian Dirichlet mixture model for multivariate excesses (joint work with A.
Sabourin)

Meteo-France data
Wet hourly events at the regional scale (temporally declustered)
of moderate dimensions (from 2 to 8)

Task 2
Assessing the dependence among rainfall excesses
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Multivariate Extreme Value Theory (de Haan, Resnick and others)

Maxima

Counting
exceedancesTail behavior

High
quantiles

Max-stability

Scaling propertyRegularly varying

Gt(tz) = G(z), for any

Λ(tAz) = t−1 Λ(Az).
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Defining radius and angular points

Example with d = 3 and X = (X1,X2,X3) such that P(Xi < x) = e
−1
x

Simplex S3 =
˘

w = (w1,w2,w3) :
3X

i=1

wi = 1, wi ≥ 0
¯
.
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Mathematical constraints on the distribution of the angular points H

P (W ∈ B,R > r) ∼
r→∞

1
r

H(B)

Features of H

H can be non-parametric

The gravity center of H has to be centered on the simplex

∀i ∈ {1, . . . , d},
R

Sd
wi dH(w) = 1

d
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A few references on Bayesian non-parametric and semi-parametric spectral
inference

M.-O. Boldi and A. C. Davison.
A mixture model for multivariate extremes.
JRSS : Series B (Statistical Methodology), 69(2) :217–229, 2007.

S. Guillotte, F. Perron, and J. Segers.
Non-parametric bayesian inference on bivariate extremes.
JRSS : Series B (Statistical Methodology), 2011.

A. Sabourin and P. Naveau.
Bayesian Drichlet mixture model for multivariate extremes.
CSDA, 2013, in press.

P.J. Green.
Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination.
Biometrika, 82(4) :711, 1995.

Roberts, G.O. and Rosenthal, J.S.
Harris recurrence of Metropolis-within-Gibbs and trans-dimensional
Markov chains
The Annals of Applied Probability,16,4,2123 :2139, 2006.
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)Qd
i=1 Γ(νµi )

dY
i=1

wνµi−1
i .

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

µ = (1/3, 1/3, 1/3) and ν = 9
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)Qd
i=1 Γ(νµi )

dY
i=1

wνµi−1
i .

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

µ = (1/3, 1/3, 1/3) and ν = 9
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)Qd
i=1 Γ(νµi )

dY
i=1

wνµi−1
i .

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

µ = (.15, .35, .05) and ν = 9

But this one is not centered ! !
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Mixture of Dirichlet distribution

Boldi and Davision, 2007

h(µ,p,ν)(w) =
kX

m=1

pm diri(w | µ · ,m, νm)

with µ = µ · ,1:k , ν = ν1:k , p = p1:k

Constraint on (µ, p)

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )
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Mixture of Dirichlet distribution

Boldi and Davision, 2007

h(µ,p,ν)(w) =
kX

m=1

pm diri(w | µ · ,m, νm)

with µ = µ · ,1:k , ν = ν1:k , p = p1:k

Constraint on (µ, p)

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )
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Inference of Dirichlet density mixtures

Boldi and Davison (2007)

Prior of [µ|p ] defined on the set

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )

Sequential inference : first p, then µ one coordinate after the other

- skewed, not interpretable, slow sampling

- Difficult inference in dimension > 3
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Inference of Dirichlet density mixtures

How to build priors for (p,µ) such that

p1 µ.,1 + · · ·+ pk µ.,k = ( 1
d , . . . ,

1
d )
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Unconstrained Bayesian modeling for
Θ =

‘∞
k=1 Θk ; Θk =

˘
(Sd )k−1 × [0, 1)k−1 × (0,∞]k−1¯

Prior

k ∼ Truncated geometric

µ.,m|(µ.,1:m−1, e1:m−1) ∼ Dirichlet

em|(µ.,1:m, e1:m−1) ∼ Beta

νm ∼ logN

Posterior sampling : MCMC reversible jumps
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Summary of the Bayesian scheme

λ, kmax
πk

k

χµ, emean.max, χe

πγ

mν , σν , νmin, νmax

πν
µ · , 1:k−1, e1:k−1

f

µ · , 1:k, p1:k ν1:k

w ∈
◦
Sd

1
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Summary of the Bayesian schemes

Boldi and Davison (2012) Our approach

Figure 5: Convergence monitoring with five-dimensional data in the original DM model (left panel) and in the re-parametrized version (right panel),
with four parallel chains in each model. Grey lines: Evolution of �g, hθt( j)�. Black, solid lines: cumulative mean. Dashed line: true value �g, h0�.
Dotted lines: true value +/- 1 theoretical standard deviation δnonPar

n of the empirical mean estimate with n = 100 points.

#{stationary} HW1 HW2 HW3 HW4 RG r1 r2 r3 r4 r5

M-DM 3 0.05 0.06 0.01 0.07 1.07 0.27 0.65 0.03 0.17 0.04
BD 1 0.01 0.07 2.10−5 0.03 ‘NA’ 0.45 0.45 0.18 0.42 0.81

Table 1: Simulated five dimensional data: convergence statistics for the output of the M-DM algorithm (first line) and the original version from
Boldi and Davison (2007) (second line). First column: number of chains retained by the Heidelberger and Welches test. Columns 2-5 :minimum
p-values (over the five test functions) of the Heidelberger and Welches’ statistics applied to each chain. Column 6: Gelman ratio. Columns 7-19:
accuracy of the estimate: ratio statistics defined by (18) for five test functions.

original parametrization is that posterior credible intervals are difficult to estimate. As an example, Figure 6 displays,
for the two parametrizations, the estimated posterior mean of the bi-variate angular density for the coordinates pair
(2, 5), obtained by marginalization of the five-variate estimated density. The posterior credible band corresponds to
the point-wise 0.05− 0.95 quantiles of the density. In both cases, the estimates are obtained from the last 120.103 iter-
ations of a chain that which stationarity was not rejected (for a 0.05 p-value) by the Heidelberger test. The estimated
credible band with the original algorithm is much thinner than it is with the re-parametrized one. As a consequence,
the true density is out of the interval for a large proportion of angular points in (0, 1).

7.3. Case study: Leeds data set

This data set gathers daily maximum concentrations of five air pollutants: particulate matter (PM10), nitrogen
oxide (NO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2). Following Cooley et al. (2010), marginal
distributions are estimated by fitting a generalized Pareto distribution to the upper 0.7 quantile and using the empirical
distribution for the remaining observations. Marginal transformation into unit Fréchet is then performed by probability
integral mapping. The 100 largest observations (for the L1 norm) over the 498 non missing five-variate observations
are retained for model inference.

For those extremes, the convergence is slow. This may be due to the weak dependence at asymptotic levels found
by Heffernan and Tawn (2004). Eight chains of 106 iterations each were generated. Discarding half of the iterations
and setting the minimum p-value to 0.01, 4 (resp. 5 chains ) cannot be rejected by the stationarity test with the
re-parametrized algorithm (resp. with the original one). For those chains, the Gelman ratio is 1.08 (resp. 1.75).

16
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Simulation example with d = 5 and k = 3

= =
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Back to our excesses of the “Lyon” cluster

Stations 68, 70, 1

0.00 0.35 0.71 1.06 1.41

w3 w1

w2
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Coming back to Leeds
Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10
(center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi & Davison, 2007)
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Figure 1: Scatterplots of NO vs. PM10 (left), SO2 vs. PM10 (center), and SO2 vs. NO (right).
The extremes of PM10 and NO appear to have relatively strong dependence, while the extremes of
SO2 and the other two pollutants appear to have much weaker dependence.
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Coming back to Leeds556 A. Sabourin, P. Naveau / Computational Statistics and Data Analysis 71 (2014) 542–567

Table 3
Convergence assessment on Leeds air quality data set, with the same statistics as in Table 1.

J � hw RG r̄ (rmin, rmax)

Re-parametrized 2 0.19 1.11 0.64 (0.05, 1.09)
Original 4 0.19 1.66 0.77 (0.12, 1.39)

Fig. 6. Five dimensional Leeds data set: posterior predictive density. Black lines: projections of the predictive angular density defined on the four-
dimensional simplex S5 onto the two-dimensional faces. Gray dots: projections of the 100 points with greatest L1 norm.

the em’s was set to 0.9. (instead of, respectively, 1–10−6 and 0.99). As for the MCMC tuning parameters, the recentring
parameters �split

µ for split-moves and �e for e-moves are respectively set to 0.3 and 0.4 (instead of 0.5 and 0.2). Results are
gathered in Table 3. Here, the error ratio are computed using the empirical estimates ĝnonP as a reference. Again, mixing
remains acceptable in the re-parametrized DM model, provided the run length is long enough, contrary to the original
version. Fig. 6 shows the projection of the predictive density on three out of the ten two-dimensional simplex faces. This
example allows to verify that our estimates are close to those found by Boldi and Davison (2007) using a non-Bayesian EM
algorithm. Again, themean estimates obtainedwith the originalMCMCalgorithmare very similar but the posterior 0.05–0.95
quantiles are thinner (not shown).

7.4. Prior influence

In this section, the influence of the prior specification is investigated. The re-parametrized model is fitted on the same
simulated five-dimensional data set as in Section 7.2, with different values for the hyper-parameters λ, σν, χµ, χe defined
in Section 3.2. Also, we verify that defining the prior distribution of ( µ, e) jointly, as in Section 3.2, leads to a substantially
more reliable inference than when the µ · , j’s and the ej’s are a priori mutually independent. An alternative prior for ( µ, e)
is thus defined so that all the mean vectors (resp. eccentricities) are independent and uniformly distributed on the simplex
(resp. the segment [0, emax]). For this simplified prior, the shape hyper-parameter σν is varied in the same way as in the
preceding setting.

The default hyper-parameter values are set to

λ = 5, kmax = 15,
mν = log(60), σ 2

ν = log(1 + 52), log(νmin) = −2, log(νmax) = 5000,

χe = 1.1, emean·max = 0.99 emax = 1 − 10−6 χµ = 1.1.

Starting from this, the hyper-parameters λ, σν, χµ, χe are perturbed, one at a time, see Fig. 7 for details. For each hyper-
parameters value, four chains are run in parallel, with a burn-in period of 80 × 103 followed by another period of 80 × 103

iterations. The same Dirichlet test functions as in Section 7.2 are chosen. Goodness-of-fit is assessed in terms of the average
error ratio r̄DM = 1

5

�5
�=1 r

DM(g�) (left panel of Fig. 7) and mixing is checked via the multivariate Gelman ratio (right panel)
computed on the stationary chains only. On both panels, lower values indicate better properties.

When µ and e are a priori dependent, as in Section 3.2, convergence and goodness-of-fit are rather robust to hyper-
parameters specification: First, the hyper-parameterλ ruling the number of components has a limited impact, only the value
λ = 1 (which penalizes sharply the number of mixture components) damages the goodness-of-fit. The number of mixture
components does not explode for large values of λ (Fig. 8), which matches the findings of Boldi and Davison (2007) with the
original algorithm. The scores are also approximately constant over the studied range of the other hyper-parameters (Fig. 7).
Only the large value χµ = 8 damages the mixing properties of the algorithm. The only case of instability is observed with
the simplified version of the prior on (µ, e), for which the mixing properties are generally poor. Note that the third Gelman
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Take home messages

Conclusions

Clustering of weekly maxima with PAM is fast and gives spatially
coherent structures

Bayesian semi-parametric mixture can handle moderate dimensions and
provide credibility intervals

Going further

Anne Sabourin = a Bayesian semi-parametric mixture for censored data
with an application to paleo-flood data
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Different results from different Monte Carlo chains ?

Stations 68, 70, 42
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Simulation example with d = 3 and k = 3

Simulated points with true density Predictive density
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The scale and shape GEV parameters
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Take home messages from part I

Extremes here means very rare

It is possible to estimate the
dependence between bivariate
extremes

Multivariate EVT may help
characterizing extremes
dependencies in space or time

Modeling trade off between
parametric and non-parametric
approaches

Challenges to go beyond the
bivariate case and to have flexible
parametric models
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New parametrisation Ex : k = 4 and d = 3

0

γm : ”Equilibrium” centers built from µ.,m+1, . . . ,µ.,k .

γm =
kX

j=m+1

pj

pm+1 + · · ·+ pk
µ.,j
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New parametrisation Ex : k = 4 and d = 3

0

I1

µ1

1

µ.,1, e1 ⇒ γ1 :
γ0 γ1

γ0 I1
= e1 ;

⇒ p1
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New parametrisation Ex : k = 4 and d = 3
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2

µ.,2, e2 ⇒ γ2 :
γ1 γ2

γ1 I2
= e2 ;

⇒ p2
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New parametrisation Ex : k = 4 and d = 3

0
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1 I22

I3

µ

µ

µ
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3

µ4

µ.,3, e3 ⇒ γ3 :
γ2 γ3

γ2 I3
= e3 ; µ.,4 = γ3.

⇒ p3, p4
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New parametrisation Ex : k = 4 and d = 3
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Parametrisation of h with θ = (µ.,1:k−1, e1:k−1, ν1:k )

(µ.,1:k−1, e1:k−1) gives (µ.,1:k , p1:k )
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