
   Applying the simple OLS form 



Observations Y	

– Most studies of surface air temperature use  

•  decadal averages and some kind of spatial averaging 
–  To reduce noise from internal variability 
–  To reduce the dimension of Y 

– Recent studies (e.g., Jones et al, 2013) use 
•  Gridded (5°×5°) monthly mean surface temperature 

anomalies (e.g., HadCRUT4, Morice et al, 2012) 
•  Reduced to decadal means for 1901-1920, 1911-1920 

… 2001-2010 (11 decades) 
•  Often spatially reduced using a “T4” spherical harmonic 

decomposition ⇒ global array of 5°×5°decadal 
anomalies reduced to 25 coefficients 

•  Yn×1 therefore has dimension n=11×25=275 



Signals Xi, i=1, …, s	

– Number of signals s is small 

•  s=1 à ALL 
•  s=2 à ANT and NAT 
•  s=3 à GHG, OANT and NAT 
•  s=4 à … 

– Can’t separate signals that are “co-linear” 
– Signals estimated from either  

•  single model ensembles (size 3-10 in CMIP5) or  
•  multi-model ensembles (~172 ALL runs available in 

CMIP5 from 49 models, ~67 NAT runs from 21 models , 
~54 GHG runs from 20 models) 

– Process as we do the observations 
•  Transferred to observational grid, “masked”, centered, 

averaged using same criteria, etc. 



Examples of forced signals 
Solar Volcanic 

GHGs Ozone 

Direct SO4 aerosol All 

PCM simulated 
20th century 
temperature 
response to 
different kinds 
of forcing 

IPCC WG1 AR4 Fig. 9.1 



The generalized regression estimator of β is 

! ! !!!!!!!!!!!!!!!!!

•  Constraints on dimensionality 
–  Need to be able to invert covariance matrix 
–  Covariance needs to be well estimated 
–  Climate model should represent internal variability well 
–  Should be able to represent signal vector well 

!!

Need an estimate    of Σ	

•  Usually estimated from control runs 
•  Even with decadal+T4 filtering, Σ is 275x275 

•  need >275 110-year “chunks” of control run for a full-
rank estimate 

è Need further dimension reduction  

!!



A frequently used dimension reduction approach is 
projection onto the low order EOFs of  !!

! ! !"!!!
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Further constraint on estimating Σ	

–  To avoid bias, optimization and uncertainty analysis 

should be performed separately (Hegerl et al, 1997) 

è Require two independent estimates of of the covariance 
matrix 

–  An estimate      for the optimization step and to 
estimate scaling factors β	


–  An estimate      to make estimate uncertainties and 
make inferences 

•  Residuals from the regression model,  
 are used to assess misfit and evaluate model based 
estimates of internal variability 

!!!

!!!

! ! !! !!!



  Step-by-step procedure 
 



Review of Basic Procedure 
1.  Determine domain, period of interest, filtering  

•  Global, 1901-2010, T4 spatial smoothing, decadal averaging 
2.  Gather all data 

•  Observations 
•  Ensembles of historical climate runs  

•  ALL and NAT runs (to separate ANT and NAT responses in obs)  
•  Control runs (no forcing, needed to estimate internal variability) 

3.  Process all data 
•  Observations 

•  homogenize, center, grid, identify where missing 
•  Historical climate runs 

•  “mask” to duplicate “missingness” of observations,  
•  process each run as the observations (no need to homogenize)  
•  ensemble average to estimate signals 

•  Control runs 
•  divide into “chunks”, re-label years  
•  process as the historical runs 
 



1901-1910 1901-1910 1911-1920 1911-1920 1921-1930 1921-1930 1931-1940 1931-1940 1941-1950 1941-1950 1951-1960 1951-1960 1961-1970 1961-1970 1971-1980 1971-1980 1981-1990 1981-1990 1991-2000 1991-2000 

Observations (HadCRUT4) Multi-model mean (ALL forcings) 

2001-2010 2001-2010 

11 decades (1901-1911 to 2001-2011) 

1901-1910 1901-1910 1911-1920 1911-1920 1921-1930 1921-1930 1931-1940 1931-1940 
1941-1950 1941-1950 1951-1960 1951-1960 1961-1970 1961-1970 1971-1980 1971-1980 1981-1990 1981-1990 1991-2000 1991-2000 2001-2010 2001-2010 

Two (of hundreds) pre-industrial control run “chunks” (CanESM2) 



Basic procedure … 
4.  Estimate internal covariance structure for optimization  

•  Use 1st sample of ν1 control run chunks to estimate 

5.  Fit the regression model in the reduced space 
•  Select an EOF truncation k	

•  Obtain an estimate of the scaling factors 

	

•  and an estimate of the residuals 

6.  Evaluate goodness of fit … 

!!!

! ! !! !!!
! ! !!!!!!!!!!!!!!!!!!!



Basic procedure … 
6.  Assess whether the residual variance in the observations is 

consistent with model estimated internal variability 

•  Allen and Tett (1999) 

•  Note that this is conditional on      (i.e., it ignores sampling 
variability in the optimization, Allen and Stott, 2003). 

•  Ribes et al (2012a) show that 

    provides a better approximation for the residual consistency test 
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Basic procedure … 
7.  Determine EOF truncation 

point via residual consistency 
test 

–  Global surface air 
temperature 

–  One signal (“GS”) 
–  270 dimensions (5-

decades, 30°×40° spatial 
averages) 

–  1600-yr of control runs 
(covariance estimated 
from 10-year overlapping 
chunks) 

–  Residual consistency 
evaluated with 

 

Zwiers and Zhang, 2003, Fig 1 
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JONES ET AL.: ATTRIBUTION OF TEMPERATURES WITH CMIP5

Table 7. Global Mean Linear Trends for the Observed Data Sets and Both CMIP3 and CMIP5 MME (K per 100 Years)a

1901–2010 1901–1950 1951–2010 1979–2010 2001–2010

HadCRUT4 0.72 1.02 1.09 1.78 0.35
GISS 0.64 0.81 1.05 1.55 0.10
NCDC 0.75 0.95 1.14 1.60 0.17
JMA 0.74 0.90 1.06 1.27 0.16
historical 0.65 (0.33,1.11) 0.65 (0.24,1.11) 1.23 (0.63,1.93) 2.11 (0.91,3.23) 1.87 (–0.47,4.92)
historicalNat 0.00 (–0.13,0.13) 0.43 (0.08,0.78) –0.14 (–0.58,0.15) 0.16 (–0.79,1.07) 0.07 (–2.49,2.43)
historicalGHG 1.09 (0.81,1.59) 0.37 (0.05,0.72) 1.93 (1.47,2.74) 2.07 (1.26,3.13) 1.93 (0.41,4.14)

aThe average of the MME trends together with the 2.5–97.5% range (in brackets) are given for the CMIP experiments (given equal weight to each
model). All observations and model simulations have same temporal-spatial coverage as HadCRUT4. Trends calculated for a period when less than 10
years have missing data, apart from the 2001–2010 when trend is calculated only when all 10 years are available.

et al., 2008], and not just contrast the MME mean with an
observational data set [e.g., Wild, 2012].

[33] A comparison of the variability of the global mean
of the models with the observations on different timescales
is shown in Figure 5 as a power spectral density (PSD) plot
(see also Figures S10 and S11 for the individual models
PSDs). The method used is described elsewhere [Mitchell
et al., 2001; Allen et al., 2006; Stone et al., 2007; Hegerl
et al., 2007]. The spectra contain variance from internal vari-
ability and the response to external forcings, as the data
has not been de-trended. The CMIP3 and CMIP5 histori-
cal MME encompass the variability of all four observational
data sets on all the timescales examined. The historicalNat
MME starts to diverge from the observations after peri-
odicities of 20 or so years and for periodicities of about
35 years no historicalNat simulations have variability as
large as observed. Together with Figure 4 this is strong evi-
dence that observed temperature variations are detectable
over internal and externally forced natural variability
on the longer timescales, whereas on timescales shorter
than 30 years changes are indistinguishable [Hegerl and
Zwiers, 2011].

[34] Figure 6 shows a summary of three statistical indica-
tors for the CMIP simulations compared with HadCRUT4,
on a Taylor diagram [Taylor, 2001]. The Taylor diagram
enables the simultaneous representation of the standard devi-
ation of each simulation and HadCRUT4’s global annual
mean TAS, the root mean square error (RMSE) and cor-
relation of the simulations with HadCRUT4. The period
1901–2005 is used, to increase the number of simulations
that can be examined, with global annual means having their
whole period mean removed. Perhaps unsurprisingly the his-
toricalNat (green points in Figure 6) simulations have the
lowest standard deviation and the lowest correlation with
HadCRUT4. None of the historicalNat simulations have a
RMSE lower than 0.2 K. All the historicalGHG simulations
have correlations with HadCRUT4 around 0.8 and RMSEs
up to 0.4 K. The historical simulations have some of the
simulations with the lowest RMSE with correlations with
HadCRUT4 varying from just above 0.4 up to just below
0.9. While the historicalNat simulations are clustered away
from the other simulations, there is some overlap between
the clusters of historical and historicalGHG simulations.

5.2. Continental-Scale Mean Temperatures
[35] Climate changes from internal variability and exter-

nal forcings would not be expected to be uniform across
the globe [Santer et al., 1995]. We examine annual mean

temperatures over sea, land and six continental land areas.
We group pre-defined regions used by the IPCC in a report
on climate extremes [SREX, 2012] into six continental
regions (Figure 7 insert). These SREX areas (Figure 3.1 and
Table 3.A-1 in SREX [2012]) do not always align perfectly
with common geographic or political definitions of the conti-
nents, but for convenience we group and call the areas North
America, South America, Africa, Europe, Asia, Australasia
and Antarctica (insert in Figure 7). All data, models and
HadCRUT4, are processed in the same way to construct
the global and regional land and global ocean temperatures.
We use the proportion of land area in each of HadCRUT4’s
grid boxes to deduce which grid boxes, in HadCRUT4 and
the models, to use. Only those grid boxes where there is
25% or more land in HadCRUT4 are used to calculate land
temperatures and only those grid boxes with 0% land are
used to calculate ocean temperatures (see the supporting
information for further details).

[36] The observed (HadCRUT4) data coverage across
the regions changes substantially over the period being
examined (Figure S6). Europe has the least amount of
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Figure 5. Power spectral density for 1901–2010 period for
both CMIP3 and CMIP5 simulations and the observations.
Analysis on annual mean data as shown in Figure 4. Tukey-
hanning window of 97 years in length applied to all data.
The central 90% ranges of the historical and historicalNat
multi-model ensemble are shown separately as shaded areas.
The 5–95% ranges are calculated given equal weight to each
model (see section 4.2). The HadCRUT4, GISS, NCDC, and
JMA global mean near surface temperature observations are
as shown in the key.

4011

Models adequately represent surface temperature 
variability on global scales … 

Variability of annual global mean surface temperature (1901-2010) estimated from 
observations (4 datasets) and ALL and NAT forced models (CMIP3 and CMIP5) 

Jones et al, 2013, Fig 5 



… and also on 
continental 
scales 
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Figure 9.8. As Figure 9.7, except for continental 
mean temperature. Spectra are calculated in the 
same manner as Figure 9.7. See the Supplementary 
Material, Appendix 9.C for a description of the 
regions and for details of the method used. Models 
simulate variability on decadal time scales and 
longer that is consistent with observations in all 
cases except two models over South America, fi ve 
models over Asia and two models over Australia (at 
the 10% signifi cance level). 
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Figure 9.8. As Figure 9.7, except for continental 
mean temperature. Spectra are calculated in the 
same manner as Figure 9.7. See the Supplementary 
Material, Appendix 9.C for a description of the 
regions and for details of the method used. Models 
simulate variability on decadal time scales and 
longer that is consistent with observations in all 
cases except two models over South America, fi ve 
models over Asia and two models over Australia (at 
the 10% signifi cance level). 



Basic procedure …. 
8.  Make inferences about scaling factors 

•  OLS expression that ignores uncertainty in      looks like… 
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A “typical” 1-signal detection result 

Detection of “GS” signal in Eurasian surface air temperature 
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detection becomes more difficult for the regions overall.
Single-signal nonoptimized analyses show essentially the
same results, indicating that nonoptimized analyses pro-
duce robust results in this case, although scaling factor esti-
mates are in general associated with larger uncertainty
bands when the signal strength is strong (e.g., ALL, ANT,
and Figure S6) than those resulting from optimal detection.

4.2. Two-Signal Optimal Fingerprint Analysis
[19] Figure 3 shows the best estimate scaling factors for

ANT and NAT in two-signal analyses of Northern
Hemisphere land in three regions (NA+EU+AS), together
with their marginal confidence intervals and joint confidence
regions. Even when separately estimating the naturally
forced signal, the anthropogenic influence is detected at the
10% significance level in both RX1day and RX5day. The
ANT scaling factors are significantly greater than zero and
consistent with one in both cases. The NAT scaling factors
are not significantly different from zero. This indicates that
the simulated ANT response is consistent with observed
changes while the simulated NAT response is not signifi-
cantly contributing to observed changes. The two-signal
analyses conducted in one or two regions (NH or ML+TR,
and supporting information Figure S13), and with ANT and
NAT simulated by the same GCMs, yield similar results
(supporting information Figure S12).

a: RX1day b: RX5day

Figure 3. Results from two-signal optimal detection ana-
lyses of extreme precipitation indices. for (a) RX1day
and (b) RX5day when using 5 year mean PI in three
(NA+EU+AS) regional averages combined with weighting
to NA, EU, and AS corresponding to areas of available data
grids. The intersections of the two error bars represent best es-
timates of the scaling factors for ANT and NAT. The 5–95%
marginal confidence intervals of the scaling factors are
displayed as error bars. The 5–95% joint confidence regions
are represented by ellipses.

Figure 2. Results from single-signal optimal detection analyses of extreme precipitation indices for (top) RX1day and (bottom)
RX5day. Best estimates (data points) and 5–95% confidence intervals (error bars) of the scaling factors are displayed for ALL,
ANT, and NAT, when using 5 year mean PI averaged over midlatitude (ML), northern tropics (TR), western Hemisphere land
(NA), western East Hemisphere land (EU), and eastern East Hemisphere land (AS), Northern Hemisphere (NH), and when using
two regional averages (ML+TR) or three regional averages (NA+EU+AS). Refer to supporting information Figure S6 for
results from nonoptimized detection analyses.
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A “typical” 2-signal detection result 
Northern Hemisphere 
1-day and 5-day 
extreme precipitation, 
1951-2005 
 

Details: 
-  Two signals (ANT, NAT) 
-  33-dimensions (11 5-yr 

averages, 3 regions) 
-  54 ALL runs (14 GCMs) 
-  34 NAT runs (9 GCMs) 
-  >15000-yr of control 

simulations (31 GCMs) 
-  total of ~455 “chunks” 

for estimating 
covariance matrices 



Calculating attributed change 
Usual approach is to calculate trend in signal, 
multiply by scaling factor, and apply scaling factor 
uncertainty 
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Observed warming 
trend and 5-95% 
uncertainty range 
based on HadCRUT4 
(black). 
 
Attributed warming 
trends with assessed 
likely ranges (colours).  

IPCC WG1 AR5, Fig 10.5 



   Total least squares 
 

Do we really know the signal perfectly, and how do proceed if 
we don’t know it completely? 



Statistical model for Xi	

– a single climate simulation j, j=1,…mi, for 

forcing i produces 

!!!! ! !! ! !!!!!
Simulated 110 
year change 

vector 

Deterministic 
forced 

response 

Internal 
variability = + 

!!!! ! !! ! !!!!!⇒ 
!!! !

!
!!

!!!!where 

That is, we assume that the δi,j ’s are independent,  
and that they represent repeated realizations of the  
internal variability ε of the observed system. 



Leads to a more complicated regression model	


Columns of    represent ensemble averages (mi ensemble 
members averaged to form column i) 
 
Columns of Δ are independent of each other, and of ε, with the 
same covariance structure as ε except scaled by 1/mi	

	

For simplicity, scale     by                                             
 
à  Columns of Δ have same covariance matrix as ε	

à  Need to remember to undo this later 
	


!!

!! ! ! !"#$! !!!!!! ! !!!!

! ! !!"#$%& ! !!
! ! !!"#$%& ! !! !!"#$%& ! !!"#$%&!!!!



Fitting the more complicated regression model	


! ! !!"#$%& ! !!
! ! !!"#$%& ! !! !!"#$%& ! !!"#$%&!!!!

Fitting involves finding the XForced and β that minimize the “size” of 
the n×(s+1) matrix of residuals [Δ, ε] 
 
The assumptions about the covariance structure determine how 
the “size” of the matrix of residuals is measured 
 
Note that because we scaled    , the estimate of XForced will be too 
large by a factor of M, which means that we will have to adjust the 
estimated XForced and β to compensate 

!!



Find XForced and β that maximize joint likelihood of ε and Δ	

 
à minimize the “size” of the n×(s+1) matrix of residuals 

!!! !!"#$%& !!! !!"#$%&!!!!
n×s n×1 

taking into account its covariance structure. 
 
To take care of the covariance structure we “prewhiten” with ! ! !!! !!!!

!!! !!!"#$% !!! !!!"#$%!! !
!!!

à after prewhitening, we minimize 

! !
!!!where           is the squared Frobenius norm (sum of eigenvalues of ATA)	


! ! !!"#$%& ! !!
! ! !!"#$%& ! !! !!"#$%& ! !!"#$%&!!!!



à minimize 

!!! ! !!"#$%&!!!!"#$%! !
!!!à minimize 

Eckart-Young-Mirsky matrix approximation theorem (Huffel and 
Vandewalle, 1991, pp31) states that: 
 

the minimum loss (measured as the least squared Frobenius 
norm) between a matrix and its p-lower-rank approximation is the 
sum of the last p eigenvalues from the singular value 
decomposition (SVD) of the original matrix.  

 
We require an approximating matrix of only one rank lower 

Note that the matrix on the left is of rank s+1 
     right is of rank s 

!!! !!"#$%& !!! !!"#$%&!! !
!!!

à minimum loss is given by the last eigenvalue ν1+s 
in the SVD of the left hand matrix 



 
The minimum loss approximation is obtained when  

                             (the last singular vector of            ) and 

Don’t forget to rescale    and                with     
 

! ! !!!!!!

Let 

n×(s+1)         (s+1)×(s+1)              (s+1)x(s+1) 

!!!!!!

!!!"#$%&!!!"#$%&! ! !"#$% !!!! !!!!! !!!

!!!!! ! !"#$% !!!! !!!!!!!! !!!

!! !!"#$%& ! !!!
!



!!! ! !!"#$%&!!!!"#$%! !
!!!

Aside – the problem of minimizing	


!!"#$%& ! !!!For OLS we take 

!!! ! !!"#$%&!!!"#$%&! !
! ! !!! ! !!!! !

!!
! !! !! !

!!

That is, we find an approximation for a vector, 
rather than a matrix, but measuring distance 
essentially the same way 

is entirely parallel to the generalized linear 
regression problem. 	




Statistical Inferences under TLS 
•  Residual consistency test 

–  Exact distribution not available analytically because the 
estimation problem is non-linear  

–  Approximate distribution suggested by Allen and Stott (2003) is 

–  Ribes et al (2012a) show, using Monte Carlo simulations, that 
this test operates at actual significance levels well below 
specified levels for reasonable values of k, v1, v2	


	


•  Confidence intervals for scaling factors 

–  Based on approximation  
 

–  Given a critical value C of        , find       that satisfy    
–  Nonlinearity makes intervals/regions non-symmetric, particularly 

when signal is weak relative to noise  

!!!!!!!! ! ! ! !!!!!!! ! !!!!! !!"#$!!! ! !!

!! ! !!! !!!!!! ! !!!!!!!!!!!!!! !
!!!!! !! !!!! !! ! !! !



5-yr means. Figure 7 shows two-signal analysis results
for four extreme temperature indices when using 5-yr-
mean PI anomalies averaged over the globe and conti-
nental regions. Overall detection results for ANT are
found to resemble those based on decadal means, in-
dicating the robustness of our results to the dimension
increase. However, there are some notable differences.
NAT detection occurs less frequently and signal sepa-
ration between ANT and NAT becomes more limited.
Also, the residual consistency test fails more frequently
than in the low-dimensional case, reflecting larger dis-
crepancies between observed and simulated variability
at shorter time scales.
The results shown in Fig. 7 are based on ANT and

ALL signals estimated from all available models and
thus the estimated NAT signal may be confounded with
the influence of model difference (see Table 1). We
therefore also test the robustness of our detection re-
sults to this model difference by redoing our analysis
using the four models that provided both ANT and
ALL runs [CCSM3, ECHAM5/MPI-OM, ECHO-G, and
MIROC3.2(medres); Table 1]. Figure 8 shows two-signal

detection results for global- and continental-mean ex-
treme temperature PIs obtained when using the same
four models to estimate the ANT and NAT signals.
Compared with the full model case (Fig. 7), the main
results, including ANT signal detection and separation
from NAT, are not affected much by the different model
samples, suggesting insensitivity of our findings to the
model difference.
Signal separation is further described by examining

joint 90% uncertainty ranges for the ANT and NAT
scaling factors for the GLB domain (Fig. 9). It is shown
that the 90% uncertainty contours exclude the origin
(0, 0) for all temperature extremes, meaning that ANT
and NAT are jointly detected through two-way regres-
sion. However, when looking at one-dimensional 90%
ranges of the scaling factors, for cold extremes, only
ANT is detected and also model underestimation is
larger by a factor of 3–4. In warm extremes, both ANT
and NAT are detected and model underestimation is
not as large, implying better agreement with observa-
tions in warm seasons, which may be partly related to
the seasonality of volcanic cooling impact as discussed

FIG. 9. The joint 90% uncertainty range for the ANT and NAT scaling factors when temperature extreme indices are regressed onto
ANT (x axis) andNAT signals (y axis) simultaneously: (top) global-mean cold extremes (TNn, TXn, and TNn1TXn) and (bottom)warm
extremes (TNx, TXx, and TNx1 TXx). The error bars indicate one-dimensional 5%–95% ranges of the scaling factors for each forcing.
The dashed horizontal/vertical lines represent zero and unity.
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Joint 90% confidence region for ANT 
and NAT detection in TNn and TXx 

Min et al, 2013, Fig. 9 

Details: 1951-2000 TNn and TXx from HadEX (Alexander et al, 2006), decadal 
time averaging, “global” spatial averaging, CMIP3 models (ANT – 8 models, 27 
runs; ALL – 8 models, 26 runs; control – 10 models, 158 chunks) 



  Covariance matrix estimation 
 



More on covariance matrix 
estimation 

•  A key source of uncertainty is the estimate of the covariance 
matrix 

•  Even with CMIP5, we often do not have enough information to 
estimate Σ well 

•  Several recent studies have attempted to avoid problems with 
covariance estimation by either  
–  not fully optimizing (e.g., Polson et al, 2013; TLS without 

prewhitening)  
–  Keeping dimension small (e.g., Sun et al, 2014; Najafi et al, 2014; 

Zhang et al, 2013; Min et al, 2013). 
•  Keeping dimension small 

–  Increases signal-to-noise ratio 
–  Eliminates the need for EOF truncation 
–  Forces explicit space- and time-filtering decisions prior to 

conducting the D&A analysis 
–  Involves a trade off (e.g., we might lose the ability to distinguish 

between different signals) 



More on covariance matrix 
estimation 

•  An alternative approach is to use a more sophisticated estimator 
that the sample covariance matrix 

•  Ribes (2009, 2012a, 2012b) suggest using the regularized estimator 
of Ledoit and Wolf (2004), which is given by a weighted average of 
the sample covariance matrix and the identity matrix 

•  This estimate is always well conditioned, is consistent, and has 
better accuracy when sample size is small !

•  Since this estimator is full rank, EOF truncation is not needed 
•  Its application requires careful predetermination of the level of signal 

detail we require from the observations 
•  For example, Ribes et al (2012a) consider the effect of different 

amounts of spatial filtering of surface temperature 

! ! !!! !!!!



  A further challenge 
 



A further challenge - EIV 

•  We assumed that columns of Δ have the same 
covariance structure as ε	


•  That is, we assumed that only internal variability 
makes the signals uncertain 

•  But model and forcing differences also make the 
signals uncertain 

•  Maybe need a more complex representation for Δ? 
•  See Huntingford et al (2006), Hannart et al (2014) 

! ! !!"#$%& ! !!
! ! !!"#$%& ! !! !!"#$%& ! !!"#$%&!!!!



  Conclusions 
 



 Conclusions 
•  The method continues to evolve 
•  Thinking hard about regularization is a good 

development (but perhaps not most critical) 
•  Some key questions 

– How do we make objective prefiltering choices? 
– How should we construct the “monte-carlo” 

sample of realizations that is used to estimate 
internal variability? 

– Similar question for signal estimates 
– How should we proceed as we push to answer 

questions about extremes? 



Thank you 
Photo: F. Zwiers 
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