Weather extremes and modes of large-scale variability

David Karoly

with inputs from Judith Perlwitz and Lisa Alexander

Overview

- Some common modes of variability
- Links between modes of variability and extremes
 - El Niño-Southern Oscillation
 - North Atlantic Oscillation, blocking in Europe

Modes of variability

- The global atmospheric circulation has a number of preferred patterns of variability, all of which have effects found in surface climate variations
 - Southern Oscillation: seesaw of pressure between the eastern and western tropical Pacific Ocean
 - North Atlantic Oscillation: seesaw of pressure between middle and high latitudes of the Atlantic
 - Northern Annular Mode: seesaw of pressure between middle and high latitudes of the Northern Hemisphere
 - Southern Annular Mode: seesaw of pressure between middle and high latitudes of the Southern Hemisphere
 - Pacific-North American pattern

Modes of variability

Fig Box 2.5-2, IPCC AR5 WG1

Modes of variability and regional climate impacts

The Climatedogs: the four drivers that influence
Victoria (Australia) climate

http://www.depi.vic.gov.au/agriculture-and-food/farm-management/ weather-and-climate/understanding-weather-and-climate/theclimatedogs-the-four-drivers-that-influence-victoriaas-climate

 The Pacific adventures of the climate crab http://www.pacificclimatechangescience.org/animations/ climatecrab/

El Niño-Southern Oscillation

Correlations of year-to-year variations with the Southern Oscillation Index for the May-April year

From Fig 3.27, IPCC AR4 WG1

surface temperature

Australian floods Jan 2011

Southern Oscillation Index (SOI)

La Niña and eastern Australian rainfall

Spring and Summer SOI and Eastern Australian Rainfall

Heavy rainfall in Oct-Mar 2011-12 in SE Aust

Observed Oct 2011-Mar 2012 anomalies in max 5 day rain

total rainfall

Impact of **ENSO**

From King et al, BAMS, 2013 THE UNIVERSITY OF

MELBOURNE

La Niña effects in the US

Changes in probability of extreme seasonal mean temperature and precipitation anomalies

DJF Temperature Extremes During La Nina Risk of Extreme Warm or Cold Years

NOAA-CIRES/Climate Diagnostics Center

1950-1999 DJF composite of SST with Nino 3.4 events

La Niña SST anomalies from observations and model simulations

From Arblaster and Alexander, GRL, 2012

Changes in temperature of hottest day in DJF season due to ENSO in observations and models

1950-1999 DJF composite of TXx with Nino 3.4 events

El Niño and global mean temperature

From Trenberth and Fasullo, *Earth's Future*, 2013

North Atlantic Oscillation

Winter variations associated with unit deviation of the NAO index

From Fig 3.30, IPCC AR4 WGI

Observed and simulated NAO

Correlations of winter 500hPa height anomalies with NAO index from observations and CMIP3 20C3M simulations

CPC

HadGEM1

from Gonzalez-Reviriego et al, 2010

Reanalysis/OBS 2010

5

2010 Russian heat wave

associated with blocking

Observed 500 hPa geopotential heights and winds

Observed temperature anomalies

From Judith Perlwitz

THE UNIVERSITY OF MELBOURNE

Observed and simulated events

TY OF

Summary

- Common modes of variability affect seasonal climate variations and the likelihood of weather extremes in many regions
- Large-scale climate variations associated with modes of variability can be simulated reasonably well by climate models
- Details of the spatial structure and temporal persistence of modes, such as blocking, is key to the representation of extremes and is not as well simulated

