Practical exercise with R




Research Problem

* While relative humidity is expected to remain
roughly constant with warming, atmospheric
moisture content is expected increase, which in
turn should result in more intense extreme
precipitation.

* |tis desirable to understand possible causes,
especially the role of human activities, in the
observed widespread intensification of
precipitation extremes (Zhang et. al., GRL, 2013)



Quantification of extreme
precipitation
e ETCCDI Indices

— Rx1day: annual maximal of daily precipitation




A closer look at Rx1day:

 Rxlday time series at a

few sample grid points
extracted from HadEX2

e Time series saved in:
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Pros and cons of Rx1day/Rx5day

* Pros:
— Clear physical interpretation
— Easy to compute

— Available for areas where daily precipitation records are not available
(e.g., via ETCCDI workshops)

— Amenable to “block maximum” EV analysis approach
* Cons:
— Magnitude is highly variable from one region to another
— Temporal variability is easily dominated by spatial variability

— Changes in data availability with time may introduce inhomogeneity
into time series of spatial averages

— Comparison to models may be difficult because the “change of
support” problem (aka, the scaling problem)

— Limited to “block maximum” EV analysis approach

— Lose information about the timing of extreme events, which limits
possibilities for including covariates in the analysis and modelling tail
dependence



Constructing Probability Index

Use the GEV distribution to convert annual time series of the
largest one-day and five-day precipitation accumulations annually,
RX1D and RX5D, into corresponding time series of Pl at each grid-
point.

— The parameters for a given grid-point are estimated by fitting the GEV

distribution to individual time series of observed or model-simulated
annual precipitation maxima by the method of maximum likelihood.

— Assume GEV parameters remain constant with time.

— Each annual maximum for a given grid point and data set is converted
to Pl by evaluating the corresponding fitted cumulative distribution
function at the value of that annual maximum.

Pl ~ Uniform (0,1)

Strong annual precipitation extremes yield Pl values close to 1,
while weaker extremes yield Pl values close to O.



R exercise

e Continue to work with the index time series
from 3 selected grid boxes

* R programs prepared for you: Pindex.r
— gev.fit (ts)
* Fit GEV distribution via maximum likelihood
— Pgev (ts, u, o, €)

e Calculate the corresponding fitted cumulative
distribution function at a given value



Fit GEV for individual grid point

* Please fit the GEV distribution for London Rx1day time
series.

* Please convert Rx1day to Pl using the fitted model:
pgev(Rx1lday, y, o, §)

> fitl=gev.fit(x1ld[51:10])

London

Confidence interval of $C190

GEV parameters is also [,1] [,2]

: B [1,] 33.3039938 33.5897733
pl’OVIdEd. [2,] 4.6388450 4,8283935

[3,] -0.1917315 -0.1647635
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Goodness of fit

One-sample Kolmogorov-Smirnov test

data: pil
D = 0.0%%6, p-value = 0.55379
alternative hypothesis: two-sided

London: uniform Q-Q plot
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Suggested activities

Can you calculate probability index for
Vancouver and Los Angeles, respectively?

Explore the goodness-of-fit of the GEV model

How about if we change the study period, e.g.,
to 1961-20107

Refer to Day2_main_V2.r in Pindex/ for
reference command lines...
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One-sample Kolmogorov-Smirnov test
data: pi3

D= 0.067%, p-value = 0.52¢9
alternative hypothesis: two-sided

LA: uniform Q-Q plot
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Vancouver

One-sample EKolmogorov-Smirnov test

data: pi5
D = 0.0678, p-value = 0.9277
Vancouver Pl alternative hypothesis: two-sided
© | Vancouver: uniform Q-Q plot
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Linear trend in transformed indices of observed annual
precipitation extremes 1951-2005

S

RX1day, OBS




Detection exercise
RX1_day, BS

L

 Attempt to detect
“ALL” signal in PI

of extreme

orecipitation
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Step 1: space-time scale of interest

* 1951~2005

Probability (%)

1970 1980 1990
year




Step 1: filtering
e Temporal: 5-year mean

e Spatial: 3 different spatial configurations (1,2 or 3 sub-
regions)
— 1-region:
* northern hemisphere land area mean (NH)
— 2 broad zonal NH regions:
* mid-latitudes (30°N~65°N, ML)
* tropics and subtropics (0°N~30°N, TR)
— 3 NH west-east regions:
e western NH (50°W~180°W, NA)
* western Eurasia (15°W~60°E, EU)
» eastern Eurasia (60°E~180°E, AS)




Step 2: gather data (OBS)

 HadEx2: a gridded (2.5° x 3.75° latitude-
longitude) land-based dataset of indices of
temperature and precipitation extremes
[Donat et al., 2013]

60 HadEX2+Russia ——
HadEX2+HadEXmask - - - -
HadEX2+Russian+HadEXmask - - - -

* +600 Russian stations =
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Figure S3, Zhang et al., 2013



Step 2: gather data (model simulations)

* CMIP5

— ALL: 54 runs from 14-MME

— NAT: 34 runs from 9-MME
ontrol runs: > 15,000 yrs




Step 3: process data

* Observations
— Merge HadEX2 and Russian in-situ data
— Convert to PI

* Model simulations

— Interpolate to the same spatial resolution, e.g.,
2.5°x3.75°

— Masked by availability of observations
— Convert to Pl



Data and codes can be found at:
DA Rxlday

— Rx1D 5yrPl_*area* All.dat

* Two rows of 5-yr regional mean Pl anomaly
— 11 observed PI, subtracting mean value 0.5
— 11 Multi-model ensemble mean Pl anomaly
» averaged across 54 ALL-forcings runs

— Noisel Rx1D 5yrPl *area*.dat

* Used to estimate variability from internal sources

e 230 rows, 11 values each

— 1 row for each 55-yr chunk obtained from control run
simulations

» masked by and processed as observations
— Noise2_Rx1D 5yrPl_*area*.dat (as above)



Step 4-8

Optimization

Fit regression model

Determine EOF truncation

Iterate 5-7

Make inferences about scaling factor(s)

o U b

These steps have all been coded for you in R

6 functionsin EC_OF.r
— readin.r — ingests data from step 3
— ols — carries out detection analysis using ordinary least squares

— tls.AO3- carries out detection analysis using total lease squares
algorithm

— tls.ROF-carries out detection analysis using regularized optimal
fingerprint

— plotbetas-visualization of scaling factor estimates
— plotrstat-visualization of results for residual consistency check



Suggested activities:

Load functions into R

— Click on “File”

— Click on “Source R Code ...”

— Enter the function name to list the function
— source() can also be used to load code

S=8 BCT =X

> source ('ECOF V1.r')
> 1s()

[1] "checkOoF"™ "Creg" "ols"™ "plotbetas" "plotrstat" "readin"
[7] "redECOE™ "redop" "redvec" "tls.A03" "t1s.ROF"
> |




Suggested activities:

* Use “readin” to get the data into R

— Results are stored in class object Z:
e Z@X (signal)
e /@Y (observation)




Preliminary analysis:

visualization of obs and signals
r R Graphics: Device 2 (ACTIVE) g‘ﬂg
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Recall the detection methods:

OLS: Y = Z‘?zlﬁixi + € = XB + €

Y - Observations
X -2 Expected changes — one vector for each “signal”
P - Regression coefficients — aka “scaling factors”

€ -2 Residuals — internal variability

Idea is to interpret the observations with a regression model,
where physics is used to provide representations of expected
changes due to external influences, statistics is used to
demonstrate a good fit, and physics is used to interpret the fit
and rule out other putative explanations

Key statistical questions relate to the 5 's and residuals €



Fitting the more complicated TLS model:

Y = YForced + £
X = Xforced 4 A
yForced — XForcedB

Fitting involves finding the X7?¢¢d and f that minimize the “size” of the
nx(s+1) matrix of residuals [A, €]

The assumptions about the covariance structure determine how the
“size” of the matrix of residuals is measured

Note that because we scaled X, the estimate of XF¢¢d wiill be too large
by a factor of M, which means that we will have to adjust the estimated

XForced and B to compensate



Suggested activities:
Detection analysis using ALL signal

1. Perform the analysis over NH (1 large region spatial
scale), over ML+TR (2-region spatial scale) and over
NA+EU+AS (3-region spatial scale)

2. Do we need EOF truncations?

3. Should we use OLS or TLS?

4. How to interpret the results?



-

Comparing results from OLS and TLS

e e ——

R Graphics: Device 2 (ACTIVE)

e N

scaling factors

OLS

best estimates of scaling factors for betatl

e S SRR RRRRRSSRSRRSR
o &
oS
e
b Q@
¢ ¢ ¢

S i b
o
o
S -
< 1
i | I T | |

2 4 6 8 10

Number of EOF patterns retained in the truncation

scaling factors

<
-

0.0 0.5

-0.5

-1.0

TLS
best estimates of scaling factors for betat
[11]
D
iy
b o 9
W (}
B | I | | |
2 4 6 8 10

Number of EOF patterns retained in the truncation




Results of RCC

‘ R Graphics: Device 2 (ACTIVE) s St é@u
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ML+TR
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ML+TR
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NA+EU+AS
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NA+EU+AS

"R Graphics: Device 2 (ACTIVE) Euied T St = | O -
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Suggested activities:
Detection analysis using NAT signal

1. Perform the analysis over NH (1 large region spatial
scale) and over NA+EU+AS (3-region spatial scale)

2. How to interpret the results?



How about NAT signal?
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In depth exercise

* Try multiple-signal analysis

— Can we isolate in observations the response to th
signal by using the ALL and NAT signa




2-signal analysis using ANT+NAT (NH)
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2-signal analysis using ANT+NAT (NH)
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2-signal analysis using ANT+NAT (NH)
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Thank you!






