Joint ICTP-IAEA College on Advanced Plasma Physics International Centre for Theoretical Physics Trieste, Italy, 18-29 August 2014

Structure /Dynamics of Fluctuation in Fusion Plasmas

<u>Y. Kishimoto</u>

collaboration with K. Imadera and J.Q. Li

Graduate School of Energy Science Kyoto University, Japan

- August 19 : Structure/dynamics of fluctuations in fusion plasmas
- August 19 : Nonlinear instability and plasma dynamics
- August 21 : Interaction between different scales

Group discussion (fusion) :

 More information for confinement including experiments, why we need to focus on fluctuation, e.g. what is fluctuation, how micro-turbulence is related to global confinement

Understanding plasmas is to understand nature

Understanding plasmas is to understand nature

- Looking at a "part", it is uncertain existence, but looing at a "whole" far away from the object, it exhibit clear and beautiful "structure" and "dynamics" with no specific symmetry.
- ✓ Careful investigation is necessary in choosing proper scales in "space" and "time"
- "Small scale structure" and "large scale structure" are incorporated through "long range force" and "short range force".

Magnetic fields in fusion device

Schedule and key aspect

$$Q \equiv \frac{P_{fusion}}{P_{in}} \sim \frac{\left\langle n^2 \left\langle \sigma v \right\rangle E_f \right\rangle}{\left\langle nT \right\rangle / \tau_E} \sim \left(n\tau_E \right) \left(\frac{\left\langle \sigma v \right\rangle E_f}{T} \right)$$

key aspect :

- high pressure state in limited volume
 (not free space, cf. space/universe)
 → high fluctuation level inevitable as Q increases
- Open system, but high autonomous system

How we can understand and explore control methodology of high pressure plasma medium with a high fluctuation level, maintaining the autonomous nature

as Q increases

Group discussion (fusion) :

✓ Larger devise (lower fluctuation), which promises stable operation

•

✓ Smaller device (higher fluctuation), but, uncertain in stable operation

Planetary environment and fusion plasmas

What is the role of ZF and LSS on transport ?

 $Q \sim n\tau_E T$ Serious challenge Opposite dependence to the goal (Bohm scaling)

"Selection of pass" and structure formation in high pressure state leading to burn, i.e. Q~1

JT-60 High Performance Shot

June 11, (June 25 :press) 1998 Shot number E31872 , $Q_{DT} \sim 1.25$

[Ishida, et al., IAEA, '98, NF, '99]

Tem. : 7 keV Den. : 1.5x1013/cm3

• Reversed magnetic shear configuration

• Internal transport barrier formation

Tem. : 14 keV Den. : 3.1x1013/cm3

Tem. : 19 keV Den. : 4.8x1013/cm3

High performance plasma (internal transport barrier : ITB) achieved by having a structure

Synergetic relation between self-sustainment of current and increase of confinement (self-organization realized)

Magnetic fields in fusion device

Fluctuations in magnetically confined plasma

Coupling between magnetic structure and wave : resonance

Long wavelength : along field line Short wavelength : perpendicular to field line

$$\mathbf{k} = \mathbf{k}_{\parallel} \mathbf{b} + \mathbf{k}_{\perp}$$

$$\mathbf{k}_{\parallel} = \hat{\mathbf{b}} \cdot \mathbf{k} = i\hat{\mathbf{b}} \cdot \nabla = i\left(\hat{\mathbf{\phi}} + \frac{r}{qR}\hat{\mathbf{\theta}}\right) \cdot \left(\frac{\hat{\mathbf{\phi}}}{R}\frac{\partial}{\partial\phi} + \frac{\hat{\mathbf{\theta}}}{r}\frac{\partial}{\partial\theta}\right)$$

$$= \frac{1}{R}\left(n - \frac{m}{q(r)}\right) \qquad k_{\parallel} = 0 \rightarrow q(r) = \frac{m}{n}$$

$$|\mathbf{k}_{\perp}| < \frac{1}{\rho_{j}} \qquad k_{\parallel} << |\mathbf{k}_{\parallel}| \qquad \left(\mathbf{k}_{\parallel} \sim \frac{1}{qR}\right)$$

Radial localization of wave by having "magnetic shear"

Typical radial mode width of the fluctuation

Distance of poloidal wave number for adjacent two rational surface

$$\Delta k_{\theta} = \left| \frac{m}{r_m} - \frac{m+1}{r_m + \Delta r_m} \right| \cong \frac{k_{\theta}}{m} \left| 1 - \frac{1}{\hat{s}} \right| < \frac{k_{\theta}}{m} \qquad \text{Wave excitation across the different rational surface with same toroidal number}$$

$$\xrightarrow{\hat{s} > 1} \xrightarrow{\hat{s} < 1} \xrightarrow{\hat{s} < 1} \xrightarrow{\hat{s} < 1}$$

Distribution of rational surface : incomplete cage

Origin of leaking of across the magnetic surface

disintegration along magnetic field line

Survive along magnetic field line and establish "standing wave"

Reversed magnetic shear plasma and double tearing mode (DTM)

S. Takechi et al., Nucl. Fusion 42, 5 (2002)

- ✓ Disruptive event terminating high performance plasma
- \checkmark Explosive (sudden) nature with pre-curser
- ✓ Double tearing mode (DTM) with multiple current sheet

Toroidal mode coupling of wave due to poloidal asymmetry

0-th order Ballooning mode local theory

• Linear eigen-mode analysis

$$\Phi(\mathbf{x}, t) = \phi(r, \theta) \exp(-in\phi - i\omega t)$$

$$\phi(r, \theta) = \exp(im_0\theta) \sum_j \phi_j(r) \exp(ij\theta_j)$$

- Bloch theory (translational symmetry) $\phi_{m}(x) = \phi_{m-1}(x-1) \exp(i\theta_{0}) = \cdots$ $= \phi_{0}(x-m) \exp(im\theta_{0})$ $\theta_{0} : \text{Bloch angle}$
- Eigen mode analysis :

 $\omega = \omega_{\rm r}(\hat{s}, x) + i\gamma_0(\hat{s}, x)\cos\theta_0$ $\omega_r(\hat{s}, x) \sim \omega_D \sim 2(k_{\theta}\rho_i)\frac{v_i}{R}$

Radial mode width and Bloch angle undetermined

Global toroidal mode structure

$$\Delta \mathbf{r} \cong \left| \frac{2\gamma_0 \sin \theta_0 \hat{s}}{k_\theta \hat{s} \left(\frac{\partial \omega_r}{\partial r} + \frac{\partial \omega_f}{\partial r} \right)} \right|^{\frac{1}{2}} \cong \sqrt{\frac{L_T \rho_i}{\hat{s}}} \qquad l = qR_0 \theta$$

$$(\Delta \theta_0)_{\max} \cong \mp \left| \frac{\left(\frac{\partial \omega_r}{\partial r} + \frac{\partial \omega_f}{\partial r} \right)}{2k_\theta \gamma_0 \hat{s}} \right|^{\frac{1}{3}} \cong \mp \left| \frac{1}{\hat{s} k_\theta L_T} \right| \qquad \text{outside}$$

 $a / R_0 = 0.36$ $R_0 / L_n = 2.22$ $R_0 / L_T = 10$ $L_T = 41.7 \rho_i$

$$\gamma(\theta_0) \simeq \gamma_0 \cos \theta_0$$

Growth rate reduction as the tilting angle increase

Global toroidal ITG mode structure including profile effect

Global turbulent simulation of ion temperature gradient mode (ITG)

Interaction between 1/1 internal kink and high-m/n ballooning mode

Development of toroidal full-f GK code

$$\begin{aligned} & \text{Developed by Imadera/Kishimoto : Kyoto University} \\ & \frac{\partial f}{\partial t} + \frac{dr}{dt} \frac{\partial f}{\partial r} + \frac{1}{r} \frac{d\theta}{dt} \frac{\partial f}{\partial \theta} + \frac{1}{R} \frac{d\varphi}{dt} \frac{\partial f}{\partial \varphi} + \frac{dv_{\parallel}}{dt} \frac{\partial f}{\partial v_{\parallel}} = C_{coll} \\ & \text{GK} \\ & \text{Vlasov Eq.} \\ & \frac{dr}{dt} = \frac{1}{B_{\parallel}^*} \left(-\frac{v_{\parallel}^2 + \mu B}{R} \sin \theta - \frac{1}{r} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial \theta} + \frac{r}{qR_0R} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial \varphi} \right) \\ & \frac{1}{r} \frac{d\theta}{dt} = \frac{1}{B_{\parallel}^*} \left[\frac{v_{\parallel}}{qR} - \frac{v_{\parallel}^2 + \mu B}{rR} \cos \theta + \frac{1}{r} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial r} \right] \\ & \frac{1}{R} \frac{d\varphi}{dt} = \frac{1}{B_{\parallel}^*} \left[\left(B + \frac{2 - \hat{s}}{qR_0} v_{\parallel} \right) \frac{v_{\parallel}}{R} + \mu B \frac{r \cos \theta}{qR_0R^2} - \frac{r}{qR_0R} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial r} \right] \\ & \frac{dv_{\parallel}}{dt} = \frac{1}{B_{\parallel}^*} \left[-\mu B \frac{r \sin \theta}{qR^2} - \frac{1}{qR} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial \theta} - \left(B + \frac{2 - \hat{s}}{qR_0} v_{\parallel} \right) \frac{1}{R} \frac{\partial \langle \Phi \rangle_{\phi}}{\partial \varphi} + \frac{v_{\parallel}}{R} \left(\frac{\partial \langle \Phi \rangle_{\phi}}{\partial r} \sin \theta + \frac{\partial \langle \Phi \rangle_{\phi}}{\partial \theta} \frac{\cos \theta}{r} \right) \right] \\ & \text{GK Q.N. Eq.} \qquad \Phi - \langle \langle \Phi \rangle \rangle_{\phi} + \frac{1}{r_{co}(r)} \left(\Phi - \langle \Phi \rangle_{f} \right) = \frac{1}{n_{0}(r)} \iint \langle f_{1} \rangle_{\phi} B_{\parallel}^{*} dv_{\parallel} d\mu \\ & \text{DK} \qquad C_{coll}(f) = \frac{\partial}{\partial u} \left[\frac{3\sqrt{\pi}}{2} \frac{n}{v_{ih}} \frac{\Phi(v) - \Psi(v)}{2v} \frac{e^{3/2}}{2v_{\theta}} v_{\theta}} \frac{e^{3/2}}{2v^2} = \frac{1}{2v^2} \left(\frac{2}{\sqrt{\pi}} \int_{0}^{v} e^{-s^2} dx - \frac{2v}{\sqrt{\pi}} e^{-v^2} \right) \end{aligned}$$

[G. Dif-Pradalier, et.al. Phys. Plasmas, 18, 62309 2011).] [S. Satake, et.al., Comput. Phys. Comm. 181, 1069 (2010).]

Development of toroidal full-f GK code

Developed by Imadera/Kishimoto : Kyoto University

- Vlasov solver : 4th-order Morinishi scheme
- Field solver : FDM(LU decomposition, r) + Fourier expansion(θ - φ)
- Time integration : 4th-order RKG scheme
- Parallelization: $3D(r-\theta-\mu)$ MPI decomposition
- Heat source and sink

$$S_{src} = A_{src} \left(x \right) \tau_{src}^{-1} \left\{ f_M \left(2\overline{T}_0 \right) - f_M \left(\overline{T}_0 \right) \right\}$$
$$S_{snk} = -A_{snk} \left(x \right) \tau_{snk}^{-1} \left\{ f(t) - f(t=0) \right\}$$

[Y. Idomura, et. al., Nucl. Fusion 49, 065029 (2009).]

• Typical simulation parameter

$$\begin{cases} \rho_* = \frac{\rho_{ii}}{a} = \frac{1}{150} & (N_r, N_\theta, N_\varphi, N_{\nu_{\parallel}}, N_\mu) \\ = (128, 128, 64, 32, 16) \\ (L_r, L_\theta, L_\varphi, L_{\nu_{\parallel}}, L_\mu) \\ \frac{R_0}{L_T} = 10 & = (150\rho_{ii}, 2\pi, \pi, 12\nu_{ii}, 18\nu_{ii}^2 / B_0) \\ \frac{R_0}{L_n} = 2.22 & \tau_{snk}^{-1} \frac{R_0}{\nu_{ii}} = 0.25, \ \nu_* \frac{R_0}{\nu_{ii}} = 0.5 \end{cases}$$

$$t = 556$$

$$t = 574$$

ITG turbulence and profile formation

Various types of heat event

① Heat avalanches radially propagates both down an up-words

$$\upsilon_{av} \leq 2.5\upsilon_b \sim 2.5C_s \left(\rho_i^* / A\right) \sim C_s \rho_i^*$$

(2) Radially extended bursts (meso-macro scales)

$$\ell_c \sim \left(L_T \rho_i\right)^{1/2} - L_T$$

$$\Delta \tau_c \sim \tau_{rec} \sim 20 - 100 \tau_d$$

• Frequency spectrum of heat

Ballistic propagation of localized heat event

[Y. Idomura, *et al.* Nucl. Fusion, 49, 065029 (2009).]
[Y. Sarazin, *et.al.* Nucl. Fusion, 50, 054004 (2010).]
[B. F. McMillan, Phys. Plasmas, 16, 022310 (2009)]

- Propagating velocity~ $\pm \rho_{ti} v_{ti} / R_0$
- Long positive PDF tails
- The direction depends on the sign of the E × B shear determined by the neo-classical Er shear.

