
Joint ICTP-IAEA College on Advanced Plasma Physics
ICTP
Trieste, Italy
18 – 29 August 2014

Course: Numerical methods and simulations

Tutor: Bengt Eliasson
E-mail: bengt.eliasson@strath.ac.uk
Homepage: http://www.strath.ac.uk/physics/staff/academic/bengteliasson/

Lecture 3: Simulation of partial differential equations

• Will continue with simulations. Today partial differential equations

– Korteweg–de Vries–Burgers’ equation: A model for fluid flow with
dissipation (e.g. collisions) and dispersion.

Assignment: Modify the program to solve the cubic nonlinear Schrödinger
equation.

We will learn how to simulate partial differential equations which depend
both on space and time. As an example, we will simulate the Korteweg–
de Vries–Burgers’ equation
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where α is the coefficient for the dispersion and β is the coefficient for
the dissipation (viscosity).

To solve a partial differential equation numerically in time, we discretize the
solution in both space and time so that the solution is only defined at
discrete points, separated by the timestep ∆t and space interval ∆x.
We will do the simulation from time t = 0 to the end time t = tend = 12
of the simulation. The space interval is from x = 0 to x = Lx = 40.
We will use Nt = 12000 intervals in time and Nx = 1000 intervals in
space, so that the timestep is ∆t = 0.001 and the spatial grid size is
∆x = 0.04.
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In our numerical algorithm, time is discretized as t = tk = k∆t, k =
0, . . . , Nt, and space as x = xj = j∆x, j = 0, . . . , Nx − 1. We denote
the solution u(xj, t

k) ≡ ukj . We will use periodic boundary conditions
so that u(L, t) = u(0, t), or, for the discretized solution, ukNx = uk0.

The spatial derivatives will be approximated with difference approxima-
tions, so that
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for j = 0, . . . , Nx− 2. The third-derivative in Eq. (1) is approximated
by combining (2) and (3). At the boundaries we will use periodic
boundary conditions so that
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for j = Nx − 1.

We will use the Runge-Kutta algorithm for the time-stepping. We re-write
the K-dV-Burgers equation as
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In our simulation, F(uk,x, tk) will contain the discretized right-hand
side of the K-dV-Burgers equation, where we use the difference approx-
imations for the spatial derivatives, and we have denoted the unknowns
uk = [uk0 u

k
1 u

k
2 . . . ukNx−1] and x = [x0 x1 x2 . . . xNx−1].
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The Runge-Kutta algorithm then becomes

(0) t0 = 0, u0 = U0 (initial conditions)

(1) R1 ← F(uk, tk)

(2) R2 ← F(uk + ∆tR1/2, t
k + ∆t/2)

(3) R3 ← F(uk + ∆tR2/2, t
k + ∆t/2)

(4) R4 ← F(uk + ∆tR3, t
k + ∆t)

(5) uk+1 ← uk + (∆t/6)(R1 + 2R2 + 2R3 + R4)

(6) tk+1 → tk + ∆t

This gives the solution u at time t+∆t. The steps (1)–(6) are repeated
with the new values of u until we have reached the end of the simulation.

We now write the main program ”main.m” for our simulation. Select from
the Matlab menu New Script, then from the menu of the new window,
choose Save / Save as, and File Name: main.m

We now write the program in the file:
===================================================

% The main program: main.m

clear

Nt=12000; % Number of time steps

Nprints=200; % Number of times to save data and print the results

Lx=40; % box length

Nx=1000; % Number of x intervals

dx=Lx/Nx; % Delta x

x=(0:(Nx-1))*Lx/Nx-Lx/2; % The x variable

dt=0.001; % The time step

t=0; % Time starts at zero.

%%% The initial condition %%%%%%%%%%%

for j=1:Nx

u(j)=1+exp(-(x(j)+15)^2/5);
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Time-stepping using the Runge-Kutta algorithm

for j=1:Nt

[u]=RungeKutta2(u,t,dt,dx);

t=t+dt;

if mod(j*Nprints,Nt)==0

plot(x,u);

axis([-20 20 0 3]); % Set the axis scaling in the figure

title(’Velocity’)

pause(0.01); % Make a pause of 0.01 seconds to plot the solutions

end

end

===================================================

Then choose from the menu Save.

Now we write the Runge-Kutta subroutine: From the Matlab menu,
choose New Script, then choose from the menu of the new file Save /
Save as, and File Name: RungeKutta.m

In the new file, we write
===================================================

% The Runge-Kutta algorithm: RungeKutta.m

function [u]=RungeKutta(u,t,dt,dx)

[R1_u]=F(u,t,dx);

[R2_u]=F(u+0.5*dt*F1_u,t+0.5*dt,dx);

[R3_u]=F(u+0.5*dt*F2_u,t+0.5*dt,dx);

[R4_u]=F(u+dt*F3_u,t+dt,dx);

u=u+dt/6*(R1_u+2*R2_u+2*R3_u+R4_u);

===================================================

Choose Save.

Next, we write the function that defines the right-hand side of the
differential equation. From the Matlab menu, choose New Script, and
then Save / Save as and File Name: F.m

In the new file, we write
===================================================
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% Definition of the differential equation: F.m

function [R_u]=F(u, t, dx)

alpha=0.05;

beta=0.05;

R_u=-d1x(u.^2/2+u+alpha*d2x(u,dx),dx)+beta*d2x(u,dx);

===================================================

Choose Save.

The spatial derivatives are defined in separate functions. The first
derivative is defined in d1x.m. From the Matlab menu, choose New
Script, and then Save / Save as and File Name: d1x.m In the new file,
we write
===================================================

%Function for calculating d/dx: d1x.m

function d1x=d1x(y,dx)

N=length(y);

d1x(2:N-1)=(y(3:N)-y(1:N-2))/(2*dx);

d1x(1)=(y(2)-y(N))/(2*dx);

d1x(N)=(y(1)-y(N-1))/(2*dx);

===================================================

Choose Save.

Finally, the second derivative is defined in d2x.m. From the Matlab
menu, choose New Script, and then Save / Save as and File Name:
d2x.m In the new file, we write
===================================================

% Function for calculating d^2/dx^2: d2x.m.

function d2x=d2x(y,dx)

N=length(y);

d2x(2:N-1)=(y(3:N)-2*y(2:N-1)+y(1:N-2))/dx^2;
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