

	CHNISCHE IIVERSITÄT EN nna University of Technology	Applications	s of TXRF		ATOMINSTITUT	
Environme	nt:		Industrial/Technical a	polication		
			ndustrial/rechnical applications:			
water.		ea, uninking water,	surface analysis	: SI-water	sunaces,	
	waste wate	r. 		GaAs-wa	ater surfaces	
air:	aerosols, ai	aerosols, airborne particles, dust,		depth an	d profile variations	
	fly ash.		thin films	sing	gle layers, multilayers	
soil:	sediments,	sewage sludge.	oil:	crude oil	, fuel oil, grease.	
plant r	plant material: algae, hay, leaves, lichen, moss,		chemicals:	acids, ba	ases, salts, solvents.	
	needles roo	ts, wood.	fusion/fission rea	search:	transmutational elements in	
foodst	uff: fish, flour, fr	uits, crab, mussel,		AI + Cu,	lodine in water	
	mushrooms	nuts, vegetables, wine,	Mineralogy:			
	tea.		ores rocks miner	als rare es	arth elements	
variou	various: coal peat		Fine Arts / Archaolog	Fine Arts (Archaelogical / Ferencie:		
Medicine / Biology / Bharmacology:			rine Arts / Archeological / Forensic:			
hedu fluida: blood aarum urina ampiatia fluid		pigments, paintings, varnisn.				
bouyi			bronzes, pottery, j	bronzes, pottery, jewelry.		
tissue	. nair, kioney	liver, lung, nails, stomaci	^{1,} textile fibers, glass	s, cognac,	dollar bills, gunshot residue,	
	colon.		drugs, tapes, sper	rm, finger p	orints.	
variou	s: enzymes, p	olysaccharides, glucose,				
	proteins, co	osmetics, bio-films.				
8/79						

	TECHNISCHE UNIVERSITÄT WIEN Vienna University of Tecl	nnology		ATOMINSTITUT						
SR-TXRF detection limits										
		Detection	limit (pg/m3)	Sample volume: 1000 I						
	Element	Element Regular Ultimate Measurement time: 1								
	S	451.3	164.0	Ring current: 100 mA						
	Cl	282.8	102.7	Regular:						
	Ca	70.2	25.5	sample strip perpendicular to the						
	Ti	48.7	17.7	beam						
	Cr	23.4	8.5	Ultimate:						
	Fe	12.4	4.5	sample strip parallel to the beam						
	Cu	4.5	1.6							
	Zn	3.5	1.3							
	Se	2.6	0.9							
	Br	2.4	0.9							
	Sr	3.4	1.2	V. Groma, J. Osán, S. Török, F. Meirer,						
	Pb	5.3	1.9	C. Streli, P. Wobrauschek, G. Falkenberg						
27/79				aerosols using SR-TXRF Időjárás 112 (2008) in press						

TECHNI UNIVER WIEN Vienna UI	SCHE SITÄT niversity of Technology		TITIT	ATOMINSTITUT
	Hand of Specific Strength Spec	Assessment of accumulated in accumulated in accumulated in a second seco	chemical species of leagn ntidemarks of human articular cray absorption near-edge structure between the species of the species of the species species of the species of the species of the species species of the specie	
76/79	 Introduction Exposure to the toxic elem- dimense of the surveyors, but the human kitcheos, where body busten is present () composing material consult in the survey of the survey of the which assessments in a regular of several hundred name producement Aud (2011), 18 	ent lined is associated with chronic ematopowies, skoletal, read and 000, 176 to perdominantly stored in a approximately 95% of the total Witness et al., 1980; Jone is a ng of an organic composate of the entity of type1-collagen molecules, by staggered manaset to form fibrils metters diameter. These collagen	While are improgramed with and surrounded by small man- crystalling particles of carbonauc quarks (Print <i>et a.</i> , 2004). The this and paralitat have been with the used in spherical higher shelfers to determine been PP breach by in erior K. Star indemnsion depth (< 2 carbonaux) in the star of the spheric (2) for Pytotensi in is reive XPI analysis, ignash are detected that have been and that equidating i Po. Kines (A better the star of the star of the star of the star is larger been and in the equidation (2). The in the osteochonetial region of sortial haves juice (<i>A capter et al.</i> , 2006) using Ph. Let Moreneeux: Back (2).	

