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Some basic concepts

Nature and science: a personal view

Nature   =   Signal    +     Noise

Science   =    Model   +   Statistics
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Why spectrum evaluation?

element concentrations ⇔ net intensity of fluorescence lines

But: 
 frequent peak overlap 
 presence of a continuum

Especially in energy-dispersive spectra 

interference free 
continuum corrected
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Spectrum contains 
• Information: energy and intensity of x-rays  

• Amplitude noise: due to Poisson statistics  
► fluctuations in the spectrum  

• Energy noise: finite resolution of the detector 
► nearly Gaussian peaks with a width of ~160 eV

Information content of a spectrum

the signal

the noise
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Amplitude noise Counting events involves Poisson statistics

Poisson probability density function:

The probability to observe N counts if the true number is µ 

Poisson : P(N | µ=3) 
Normal : P(x | µ=3 σ2 = 3)

Property:

Poisson distribution 
µ ≅ Normal distribution 

µ and σ2 = µ 

approximation is very good for µ (or N) ≥ 9
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Resolution of ED-XRF spectrometers  

Full Width at Half Maximum (FWHM) of a peak

Mn Kα @ 5.895 keV 
FWHMDet = 120 eV 
FWHMElec = 100 eV 
=> FWHMPeak = 156 eV

Intrinsic contribution
2 Spectrum analysis

2.35
⇥

�� F � E (9)

FWHM2
Peak = FWHM2

Elec + Det2Pealk (10)

2

ϵ  energy to create e-h pair 3.85 eV 
F  Fano factor ~0.114 
E  x-ray energy in eV

2 Spectrum analysis

2.35
⇥

�� F � E (9)

FWHM2
Peak = FWHM2

Elec + FWHM2
Det (10)

2

Electronic noise 
~100 eV

Energy Noise
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Cr – Mn – Fe overlap at ~20 eV Cr – Mn – Fe overlap at ~160 eV

Resolution of ED-XRF spectrometers  Energy Noise
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Without amplitude noise (counting statistics) there would 
be NO PROBLEM

But it is part of the nature 
We can only measure longer or with a more efficient system

Without energy noise there would be LITTLE PROBLEM 

The natural line width of x-rays is only a few eV!!!

The observed peak width is the result of the detection process 
with a fundamental limitation imposed by the Fano factor
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Information content of a spectrum

If no energy noise or no amplitude noise 
► could determine the “information” unambiguously

Need methods to extract information in a optimum way 
These methods rely on “addition” information (knowledge)  
to extract the useful information

Not the method itself is important (if implemented correctly)  
but the correctness of the additional information.
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2. Simple peak integration
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Simple peak integration

Estimate

Uncertainty

We have to make assumptions 
integration limits 
linear background 
no interference

As good as is can get 
if the assumptions (model) are correct!
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3. Method of Least Squares
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Need to “estimate” the net peak area with highest possible 
• correctness (no systematic error) 
• precision (smallest random error)

Least-squares estimation (fitting): 
• unbiased 
• minimum variance

Limiting factors: 
• counting statistical fluctuations (precision) 
• accuracy of the fitting model

Method of least squares



15

Method of least squares, straight line

2 Spectrum analysis

2.35
p

�⇥ F ⇥ E (9)

FWHM2
Peak = FWHM2

Elec + FWHM2
Det (10)

SS =
X

i

[yi � y(i)]2 =
X

i

[yi � b0 � b1xi]2 = min (11)

⇤SS

⇤b0
= 0 !

X

i

yi = b0n + b1

X

i

xi (12)

⇤SS

⇤b1
= 0 !

X

i

xiyi = b0

X
xi + b1

X

i

x2
i (13)

2

2 Spectrum analysis

2.35
p

�⇥ F ⇥ E (9)

FWHM2
Peak = FWHM2

Elec + FWHM2
Det (10)

SS =
X

i

[yi � y(i)]2 =
X

i

[yi � b0 � b1xi]2 = min (11)

⇤SS

⇤b0
= 0 !

X

i

yi = b0n + b1

X

i

xi (12)

⇤SS

⇤b1
= 0 !

X

i

xiyi = b0

X
xi + b1

X

i

x2
i (13)

2

Set of 2 equations in 2 unknowns b0 and b1 
Normal equations

Direct analytical solution

Data: {xi,yi}, i=1, 2, …, N

Model: y(i) = b0 + b1xi

Fitting the model: 
 estimating b0 and b1

Criterion:

noise
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4. Fitting X-ray Spectra
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Least-squares estimate of x-ray spectrum parameters

Peak described by a Gaussian

Minimum: 
No direct analytical solution 
Search χ2 for minimum
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We can still apply the concept of least squares 
minimising the square of the differences between the model 
and the data

The sum of squares is a function of the values of the 
parameters and for a given set of values should be minimum

In this case SS describes a 4 dimensional hyper-surface in a 5-
dimension space

h

We can only “see” in 3-dimensions 
but mathematically we can search in a 
higher dimensional space to locate the 
minimum

Starting from some initial values we can 
modify the parameter values until the 
minimum is reached.

�

2 = �

2(b, h, x0, w) =
1
⌫

P
i

1
yi

[yi � y(xi, b, h, x0, w)]
2

w



19

General form of such a search algorithm

1. Select starting values for all parameters bj 
and calculate the ch-square

2. Obtain (calculate, guess...) a change 
(increment or decrement) Δbj such that one 
moves towards the minimum:

3. Replace the old parameter values with the new ones  
 b ← b + Δb

4. repeat step 2 until the “true” minimum is found

Iterative process

AXIL = Analysis of X-ray spectra by Iterative Least-squares

� = �(b)

�(b+�b) < �(b)
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Analytically important parameters: net peak areas

In general y(i) is non-linear → Marquardt – Leverberg algorithm 
Gradient search ↔ linearisation 
Reliable error estimated 
But unstable

Statistical optimal estimate: 
using correct weight (Poisson statistics wi = yi)
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10 peaks ⇒ > 30 parameters !!!! WANT WORK in practice!!!!

But we can do better

⇒ Add additional information to the model

We known the energies of the x-ray lines (in most cases) 
Where they are depends on the energy calibration 
(the same applies to the width of the peaks: resolution calibration)

y(i) = b + A
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(Ei � E)

2

2�

2
(E)

�

1

Gaussian peak shape

Energy relation:

Resolution relation:
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2

p
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1

Only 4 non-linear parameters 
For 10 peaks only 14 parameters

Need parsimony!!!
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Already better, but we know more

We know (to some extend) the ratio between lines of an element

y(i) = b + A

1
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. . .

1

We can group lines together (“peakgroup”) with one “area” 
and fixed intensity ratios

Continuum 
function

Area Line 
ratio

Peak 
shape

for j elements (or peak groups)
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10 elements ⇒ 10 Area’s + 4 calibration parameters
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Further refinements: escape peaks Known 
position (energy) 
intensity (escape probability)
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Sum peaks Known 
position 
relative intensity
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And more Different background models 
polynomial 
exponential polynomial 
Bremsstrahlung background 
filter background

Parameter constraining

and more...
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Highly flexible method 
• Fit individual lines, multiplets, elements… 
• Different parametric and non-parametric continuum models 
• Include escape and sum peaks

Quality criteria   
• Chi-square of fit 
• uncertainty estimate of parameters

Statistically correct 
• unbiased, minimum variance estimate of the parameters

“Resolving power” is only limited by the noise (counting statistic) 
BUT 

THE MODEL MUST BE ACCURATE
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5. Improvements to the model
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Incorrectness of the model

Not all peaks follow the energy calibration relation 
- incoherent (Compton) scatter peaks 
- spurious peaks (diffraction, γ-rays) 
- even the relation might not be linear

Not all peaks follow the resolution calibration relation 
- incoherent scatter peaks (are wider) 
- spurious peaks

Peaks are certainly not perfect Gaussians 
- shelf (step) due to detector effects (incomplete charge collection) 
- tailing due to radiative effects and detector effects 
- deviation due to natural line width (Lorentzian)
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Incorrect fitting model biased results

Solution Adapt the model  
(fitting region, which lines to include...)  

for each particular case

Very inconvenient  
when analyzing 
many spectra

⇒

especially for trace elements
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Improve the peak profile

Where is my parsimony gone!!!

Improvements
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Step parameterisation

Step is a fundamental aspect of the detector  
(charge loss by photo-electrons near the 
surface of the detector)

Step fraction fS is related to the MAC 
of the detector crystal

Tail fraction parameterisation

Tail fraction fT is related to the 
MAC of the detector and the type 
of radiation (Kα and Kβ)

The tail has a component due to the 
detector and a radiative component
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Tail width parameterisation

similar magnitude over the entire 
energy range 
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improvement
Fit of a NIST SRM 1106 Brass spectrum (SpecTrace 5000, Rh tube)
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To account for peak shift and peak broadening

Need to make the peak profile still a bit more complicated
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The last step

Replace Gaussian with the convolution of a Gaussian with a Lorentzian 
  = Voigt profile
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with K(...) the complex error function

For high Z elements the natural line width becomes substantial 
relative to the detector resolution
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Natural line width at high Z elements becomes important 
e.g. W K ~ 50 eV

Gaussians Voigts
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Original fit of a geological standard (JG1)
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Improved fit of the geological standard (JG1)

Mo secondary target 
No background
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NIST SRM 1155
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NIST SRM 1247
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More Details 

Handbook of X-ray Spectrometry 
R. Van Grieken, A. Markowicz 
Marcel Decker, N.Y. 2002 
ISBN: 0-8247-0600-5 

Chapter 4: Spectrum Evaluation
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Some final remarks: The future

Non-linear least-squares works

if you have a good parsimonious model
if you have TIME

X-ray fluorescence imaging: 
 256 x 256 image = 65536 x-ray spectra

@ 1 s / spectrum
= 65536 seconds 
= 1092 minutes 
= 18 hours !!!!

Need to explore new methods 
 Linear models? 
 Multivariate models?
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6. Final remarks
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Thanks for your attention


