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Monte Carlo method:
definition

Refers to any technique of statistical 
sampling, employed to approximate 
solutions to quantitative problems which 
may be too complex to solve analytically



Origins of the
Monte Carlo method

Developed twice 
independently

1. Enrico Fermi: moderation 
of neutrons

2. Metropolis, Ulam and Von 
Neumann: Manhattan 
project and ENIAC

The beginning of the Monte Carlo method by N. Metropolis, 1987



Monte Carlo
simulation method

• Widespread statistical simulation tool 
based on the use of random numbers

• A given problem is converted to its 
probabilistic analogue

• Used in mathematics, physics, engineering, 
biology, artificial intelligence, economy etc.



Monte Carlo
simulation method

• Phenomena occurring in the examined system 
must be characterized by probability density 
function (pdfs)

• Perform simulations by random sampling from the 
pdfs

• Desired result is taken as an average over a 
number of observations

• Engine is most often a pseudo random number 
generator



Generating random variables 
with a specified distribution

• Continuous random variable: xmin ≤ X ≤ xmax

• Probability density function: f(x) ≥0
with: 

• Cumulative distribution function:
 

• Monotonously increasing, F(xmin) = 0, F(xmax) = 1
x = F-1(R) inverse cdf, with 0 ≤ R ≤1

The values selected using the inverse 
cdf will reproduce the distribution f(x)
in the interval [xmin, xmax]
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Generating random variables 
with a specified distribution

• Discrete random variables: X = {x1,...,xn}

• Corresponding probabilities of events 
{x1,...,xn}: {P1,...,Pn}

• R: uniform random number in [0,1]

• Select event for index k={1,...,n}:
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Random number 
generators

• Critical component of all Monte Carlo 
simulations!

• Initially performed using lists of “true” 
random numbers

• Von Neumann: first pseudo random number 
generator (middle-square method)

• Properties: speed, period length, uniformity, 
coverage

A Million Random Digits with 100,000 Normal Deviates by the RAND corporation



Pseudo random
number generators

1. Linear congruential generators

• Short period: maximum 232 or 264

• Easily implemented

•  

2. Mersenne twister

• Most commonly used PRNG nowadays

• Period: 219937-1

• Passes the Diehard test package

• GPU implementation available (MTGP)
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Pseudo random
number generators

3. /dev/random

• special device file on Unix(-like) operating systems

• very high quality randomness (for cryptographic 
applications!)

• entropy pool fed with noise produced by device 
drivers, network interfaces etc.

• blocks → slow!

• non-blocking version: /dev/urandom (Linux only)

• Windows alternative: CryptGenRandom and rand_s



Example: estimation of π 

Random selection of 
points within a square of 
2a x 2a = 4a2 area
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Monte Carlo simulation 
of X-ray fluorescence

spectrometers



Brute force algorithm



• Basic idea: predict the response of X-ray 
imaging and spectroscopy experiments

• Optimize and design experimental setups in 
silico

• Dose calculation

• Estimation of detection limits

• Quantification

A general Monte Carlo simulation 
of ED-XRF spectrometers



A general Monte Carlo simulation 
of ED-XRF spectrometers

• Simulates the fate of individual photons

• Trajectories are modeled as consisting of a 
number of straight steps.

• At the end of each step, an interaction will 
occur, leading to a change in direction and 
energy





Initial photon properties:
• Energy
• Degree of linear polarization
• Intensity (weight)
• Point or Gaussian source
• Discrete or continuous



Sample properties:
• position and orientation
• n parallel layers
• Thickness
• Density
• Composition



Detector properties:
• position and orientation
• crystal
• window
• zero/gain
• Collimator (optional)



Stepsize?
Atom type?
Interaction type?
New direction?



Selection of the
step length

• Determined by the density, thickness and 
the absorption coefficients of the sample 
layers

• Inverse cdf is based on the Bouguer-
Lambert-Beer equation:

f (x ) = µρ exp(−µρx )

F(x ) = µ
0

x

∫ ρ exp(−µρt)dt =1− exp(−µρx ) ≡ R⇒ x = −
1
µρ
ln(1− R)⇔ x = −

1
µρ
ln(R)



Selection of atom type

Current layer contains ne different elements, 
each element present with a weight fraction wi
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Selection of
interaction type

Three possibilities:

1. Rayleigh scattering: 

2. Compton scattering

3. Photoelectric effect
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Rayleigh scattering
• Energy remains 

unchanged

• Scattering angle θi and 
azimuthal angle φi must 
be selected in 
accordance with the 
appropriate differential 
Rayleigh cross section.

• Inverse CDFs are 
calculated numerically



Compton scattering
• Energy-loss according to 

Compton formula:

 

• Scattering angle θi and 
azimuthal angle φi must be 
selected in accordance with 
the appropriate differential 
Compton cross section.

• Takes into account the 
influence of the momentum 
pz of the scattering electron 
on the energy-transfer
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Photoelectric effect

Which shell experienced effect?
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Photoelectric effect

Fluorescence yield: fluorescence or Auger effect?

Using yields for primary vacancies!

Fluorescence if:

Take into account Coster-Kronig transitions! 

0 ≤ R <ω
shell
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Definitive selection of L-shell
to be involved in transition



Definitive selection of M-shell
to be involved in transition
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Photoelectric effect
Which fluorescence line?

Determine using the shell’s radiative rates:

Scattering angle θi and azimuthal angle φi are 
chosen random:
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Photon emission or Auger effect?
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XRF cross sections:
cascade effect

• Occurs whenever multiple shells of a particular 
element can be excited

• Two components: radiative and non-radiative

• Leads to considerable boost in the observed intensity 
of L- and M-lines: several times larger than intensity 
through primary excitations

• Very obvious when using monochromatic excitations

• Very often neglected in quantification and simulations

• Complex implementation

• Many fundamental parameters involved → accuracy?



New photon 
coordinates

Photon direction:

Photon coordinates:
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Photon termination

• After each interaction, a new step length 
will be calculated and so on...

• The procedure stops when either the 
photon is absorbed by the sample or leaves 
it.

• Upon leaving the sample, a check is 
performed to determine whether or not 
the photon hits the detector



Brute force algorithm: 
inefficient

• Very large number of photons must be 
simulated

• Possible loss of photons due to thin, low 
absorbent samples, low fluorescence yields, 
and detector geometry

• Usually requires supercomputer



Code optimizations: 
variance reduction



Selection of the
step length

• Force photons to stay within the system

• Largest index m is found according to:

• Step length calculated as:

• Photon weight multiplied with Pabs



Forced detection

• For each photon at each interaction point

• Calculate the probabilities of all possible 
pathways of the photon to reach a random 
point on the detector

• Fractional photons added to virtual MCA



Fluorescence yield

• Multiply photon weight with fluorescence 
yield of selected sub-shell

• Avoids the loss of simulated photons to 
low energy cascade photons

• Cascade effect simulation taken into 
account by variance reduction through 
corrected XRF production cross sections



Detector
response function



Case study:
NIST SRM 1155

• Stainless steel Cr18Ni12

• HASYLAB Beamline L

• Excitation energy: 16 keV

• Exposure: 300 s RT

• Degree of polarization 
∼ 92 %

• Beam-size: 10 x 10 µm2

Cr 18.37%

Ni 12.35%

Mo 2.386%

Mn 1.619%

Cu 0.1734%

Co 0.1052%

V 0.0508%

C 0.0445%

S 0.0175%



Experimental data



Raw simulation result



Semiconductor 
detectors

• Incident X-rays will ionize the 
semiconductor material, leading to the 
production of electron-hole pairs

• The number of pairs is proportional the 
energy of the incoming photon

• Influenced by an electric field, the electrons 
and holes migrate to the electrodes

• Results in a pulse that will be measured in 
the outer circuit

• Dead time leads to some photons not being 
counted



Spectral artifacts:
peak broadening

• XRF lines experience Gaussian peak-broadening, 
due to the statistical nature of the photon-charge 
conversions and to electronic noise

• Incoming lines are not discrete, but have a 
Lorentzian profile

• Spectral peaks follow a Voigt profile, a convolution 
of a Gaussian and a Lorentzian distribution

• Usually approximated as Gaussians or pseudo-Voigt 
functions



After Gaussian convolution



After Gaussian convolution
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Detector escape peaks
• Photons produced in 

detector crystal through 
XRF or Compton scattering 
may leave detector

• Results in detection of a 
pulse with energy lower 
than expected

• Escape peak ratios 
calculated based on crystal 
composition and thickness

• Calculated analytically or 
with Monte Carlo simulation



Detector escape peaks

Compton escape ratios in Si drift detector
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With escape peaks



With escape peaks



Detector pulse
pile-up simulation

• Emergence of peaks at energy values 
corresponding to the sum of XRF peaks

• Due to the limitations of the electronics 
connected to the detector

• Magnitude strongly correlated to beam 
intensity

• Monte Carlo simulation using exponential 
pulse interval distribution



Cu−KL 3

(esc)

Cu−KM 3

Scatter

Pulse pile−up peaks
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With pulse pile-up...



...and some Poisson noise



Higher order interactions



Higher order interactions



Individual interaction 
contributions to intensity
• XRF CS of Cr-KL23

@16 keV: 8.3116287
@Ni-KL23: 70.221933
@Fe-KL23: 109.02429!!

• XRF CS of Fe-KL23

@16 keV: 12.699491
@Ni-KL23: 97.242868

• XRF CS of Ni-KL23

@16 keV: 18.460541

Expressed in cm2/g

# Cr-KL23 Fe-KL23 Ni-KL23

1 655007 3084620 482088

2 406554 194120 3066

3 29652 2558 28

4 706 27 < 1



Overview of
available codes



Geant4

• Low energy electromagnetic package

• Support for cascade effect

• Toolkit, not a finalized program

• Allows for very complex geometries

• Electron-matter interactions

• Open source



MCSHAPE

• Dedicated XRF code

• Advanced modeling of electrons produced 
by Compton, Auger and photoelectric 
effect 

• University of Bologna: Jorge Fernandez and 
Viviana Scot

• Source code not distributed, binaries only



XRMC

• X-ray spectroscopy and imaging 
experiments

• Complex sample geometries using quadrics

• Highly extensible

• University of Sassari

• Open source: GPLv3
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