

Air quality modelling: A support for short term and long term policies

Frederik Meleux, Augustin Colette, Bertrand Bessagnet

Institut National de L'Environnement Industriel et des Risques

- how AQ models are involved in short term policies to deal with current situation
- how AQ models are used to assess long-term policies in a climate change context.

Air quality impacts on health in Europe

0 .. 1 months

1..2

6..9 9..12

Health impacts:

Premature death in people with heart or lung disease nonfatal heart attacks irregular heartbeat aggravated asthma decreased lung function respiratory symptoms (coughing or breathing difficulty).

Table ES.1 Percentage of the urban population in the EU exposed to air pollutant concentrations above the EU and WHO reference levels (2009–2011)

Pollutant	EU reference value	Exposure estimate (%)	WHO AQG	Exposure estimate (%)
PM _{2,5}	Year (20)	20-31	Year (10)	91-96
PM10	Day (50)	22-33	Year (20)	85-88
0,	8-hour (120)	14-18	8-hour (100)	97-98
NO ₂	Year (40)	5-13	Year (40)	5-13
BaP	Year (1)	22-31	Year (0.12)	76-94
SO2	Day (125)	< 1	Day (20)	46-54
со	8-hour (10)	< 2	8-hour (10)	< 2
Pb	Year (0.5)	< 1	Year (0.5)	< 1
Benzene	Year (5)	< 1	Year (1.7)	12-13

	Colour coding:	< 5 %	5-50 %	50-75 %	> 75 %	
--	----------------	-------	--------	---------	--------	--

Health impacts in Europe:

- loss in life expectancy ~8.5months
- 400,000 anticipated deaths each year

Loss in life expectancy due to PM2.5 TSAP Report #10, IIASA 2013

AQ targets largely exceeded in urban areas

European legislation for ambient air quality: Air quality package

- Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to <u>arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons</u> in ambient air
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe: <u>Ozone, PM10, PM2.5, NO2, SO2, CO, C6H6,</u> <u>Pb</u>
 - Monitoring standards : certified instruments, network set-up rules (number of sites, typology, location), quality objectives
 - Limit and target values for ambient concentrations
 - Implementation provisions for regulatory reporting
 - > Actions in plans in terms of non attainment of air quality objectives
 - Public information

Current situation : Limit values

Pollutants	AQ Directive 2008/50/EC	Guideline values (WHO)	
PM10	50 μg/m ³ daily average not exceeded more than 35 times/year 40 μg/m ³ yearly average	50 μg/m ³ daily average 20 μg/m ³ yearly average	Member States
PM2.5	Exposure index based on the daily average 25 µg/m ³ yearly average (20µg/m ³ in 2020)	25 μg/m ³ daily average 10 μg/m ³ yearly average	data analysis: expert OA & assessments EEA data processing & dissemination
03	120 μg/m ³ 8-hours average not exceeded more than 25 days/year	100 μ g/m ³ 8-hours average	
NO2	40 μg/m ³ yearly average 200 μg/m ³ hourly average not exceeded more than 18 times/year	40 μ g/m ³ yearly average 200 μ g/m ³ hourly average	
SO2	350 μg/m ³ , hourly average not exceeded more than 18 times/year 125 μg/m ³ daily average not exceeded more than 5 times/year	20 μg/m ³ daily average 500 μg/m ³ 10min average	

European legislation for ambient air quality: : Air quality package

- Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to <u>arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons</u> in ambient air
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe: <u>Ozone, PM10, PM2.5, NO2, SO2, CO, C6H6, Pb</u>
 - Monitoring standards : certified instruments, network set-up rules (number of sites, typology, location), quality objectives
 - Limit and target values for ambient concentrations
 - Implementation provisions for regulatory reporting
 - Actions in plans in terms of non attainment of air quality objectives
 - Public information
 - Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for atmospheric pollutants
 - NOx, VOCs, SO2, NH3 -> should be revised in 2013 to include fine PM

Emissions have decreased... but exposure remains high

Emissions reduction relative to 2002 for the main pollutants and precursors

Air quality in Europe, 2013 report

Fraction of the urban population exposed to air pollution exceeding WHO air quality guidelines EEA, 2013

Main challenges for PM pollution today in the EU

- Residential (wood burning)
- Agricultural emissions : (ammonia is a precursor of fine particles)
- Traffic
 - Low emission zones (road)
 - Reducing speed limits (road)
 - Cleaner engines and fuels
 (whatever the mode)
 - Control of road resuspension
- Industrial emissions
- Quantify the contribution of natural sources (fires, mineral dusts)

Agriculture
 Energy production and distribution
 Industrial processes
 Other
 Solvent and product use

Commercial, institutional and households
 Energy use in industry
 Non-road transport
 Road transport
 Waste

Source: EEA

pour un développement durable

Sector contributions of emissions of primary particulate matter and secondary precursors (EEA member countries)

The French response to improve air quality

• French order of March 26th, 2014

JORF n°0075 du 29 mars 2014 page 6139 texte n° 30

ARRETE Arrêté du 26 mars 2014 relatif au déclenchement des procédures préfectorales en cas d'épisodes de pollution de l'air ambiant

Objectives:

- Anticipation of pollution episodes to implement mitigation measures in a more efficient way
- > Definition of exposure criteria based on air quality forecasts

ar an developpement du

The prevair.org system

- An operational system building on numerical tools to reinforce the air quality management network:
 - Daily forecasts delivered by 8 am
 - Daily peak and daily averaged values for: J+0, J+1, J+2
 - Pollutants: O3, NO2, Aerosols (PM10, PM2.5 and DUST)

Cascade of air quality forecasts at various scale

PREv'AIR objectives: public information

 In case of pollution events, there is an agreement between ministry of ecology and National TV for broadcasting air quality forecasts

Definition of an air quality episode (according to the order)

A reported or forecast exceedance is characterized as a pollution episode if one of the following conditions is fulfilled:

Condition based on	Scale	Criterion
Surface	French adminsitrative region	At least 100 km ² inside a region are affected by an exceedance
Population	French department	At least 10% of the population within a department of more than 500000 inhabitants are exposed to an exceedance. or At least 50000 inhabitants within a department of less than 500000 inhabitants are exposed to an exceedance.
Local particularities	Local area	Specific conditions (geographical and dispersion conditions, local emissions) likely to cause exceedances

Threshold (µg.m ⁻³)	O ₃	PM ₁₀	NO ₂
Info & recommendations	180	50	200
Alert	240	80	400

AQ forecasts

Communication to local authorities

All the results (exceedance area, exposed population, comparison with the criteria) are gathered in synthetic files (one per region, per pollutant and per threshold) which are made available to the AASQAs on the PREV'AIR website

(+ email sending) around 8.30 am. Example of possible use of PREV'AIR products by the

 S0 Produit : Adaptation statistique	
S0 Resultat pour la region : NORD-PAS-DE-CALAIS	
S0 Code de la region : 31	
SO Polluant : PM10	
S0 Seuil de depassement : 50	
S0 Date D+0 : 20140917	
S0 Nombre de mailles : 1352	
S0 Nb habitants dans la region : 4042818	
S0 Nb habitants concernes : 398812	
S0 Nb habitants concernes en % : 9.9	
S0 Surface en m2 couverte par la region : 12633638559	
S0 Surface en m2 concernee : 1279423652 S0 Surface concernee en % : 10.1	
S0 Surface concernee en % : 10.1	
SO Maximum sur la region : 55.6	
SO Moyenne sur la region : 36.4	
S0 Critère sur popu : non_vérifié	
SO Critère sur surf : vérifié	
\$0	
S-1	
S00 Resultat pour le departement : NORD	
L01 Date D+0 : 20140917	
LO2 Produit : Adaptation statistique	
L03 Polluant : PM10	
L04 Seuil de depassement : 50	
S05 Code departement : d59	
L06 D+0 : Nombre de mailles en depassement : 937	
L07 D+0 : Nb habitants dans le depart. : 2577092	
LO8 D+0 : Nb habitants concernes : 265084	
L09 D+0 : Nb habitants concernes en % : 10.3	
L10 D+0 : Surface du departement en m2 : 5751079907	
L11 D+0 : Surface concernee en m2 : 871471556	
L12 D+0 : Surface concernee en % : 15.2	
L13 D+0 : Maximum sur le departement : 55.6	
L14 D+0 : Moyenne sur le departement : 34.9	
SO6 D+O : Critère sur popu : vérifié	
22	

http://www.atmo-ca.asso.fr

PM10 episode : decembre 2013

•Good temporal detection of exeedances

PM10 episode : decembre 2013

Good temporal detection of exeedancesComplementary to the chemical data from the CARA network

During episodes, chemical analyses of the major species and source tracers are performed by the LCSQA in collaboration with university laboratories. **Evolution toward automatic measurement.**

PM10 episode : March 2014

poussières minérales

sels marins

🗖 ammonium

carbone suie

matière organique

sulfate

nitrate

PM10 dépassements du seuil de 50 µg/m3 D+0 Année: 2014

Interactive emissions

- The emissions are based on annual total emission on which are applied fixed temporal profile to provide hourly emissions
- Dynamic emissions mean to forecast the impact of meteorological conditions (forecasts) on emission intensity and variability (temporal)
 - Effort has been done successfully to modulate the emission of the domestic sector (SNAP2)
 - Significant improvement of the PM10 forecasts during wintertime
- For others emission sectors, it would need to extent such approach:
 - SNAP6: solvant emissions dependant of the temperature
 - SNAP10: Agricultural emissions (NH3)
 - SNAP7: Traffic emissions

maîtriser le risque pour un développement durable

Evaluation of the natural contributions: desert dust

Volcanic eruption in Iceland – Bardarbunga (Sep. 2014)

Why assessing natural contribution is important?

- Specific treatment to remove the natural contributions from PM10 measurements
 - Sea salt, biomass burning, dust & volcano contributions
 - Implies a reduction of number of non regulatory report of PM10 values
 - Savings

MACC-reanalyses : EEA support

Every year, MACC produces AQ report for previous year describing AQ indicators

MACC-reanalyses : EEA support

maîtriser le risque pour un développement durable

0

Additional products: Copernicus scenarios

• To help policy users to select the most efficient measure, a toolbox has been developed for visualizing the impact of control emission scenarios on pollutant concentrations (O3, NO2, PM10, PM2.5)

Evolution of the PREV'AIR role in the French air quality management

 To help policy users to select the most efficient measure, a toolbox has been developed for visualizing the impact of Gothenburg scenarios on pollutant concentrations (O3, NO2, PM10, PM2.5)

development du

Future Air Quality Projections, Health Impacts, Valuation

Emission projections

- The Global Energy Assessment (2012)
- Primary energy consumption in Europe:
 - Same AQ Legislation
 - Different Climate policies

Business as usual

Mitigation

Global Energy

Q 🖸

Assessment

Toward a Sustainable Future

Future Air Quality: SOMO35 (sum of O3max > 35ppb)

• Projections: status-quo for the Reference, large decrease for the Mitigation

Air Quality: PM2.5 (annual mean)

• Projections: significant decrease under both scenarios

decomposition of the external factors: ozone

- Climate penalty confirmed
- Major influence of global chemistry
- AQ legislation efficient

decomposition of the external factors: PM

- Climate benefit (but model dependant)
- AQ legislation dominates

Health impact assessment

Health impacts PM & O3

- PM2.5:
 - 5 300 000 life-years are lost in 2005
 - ~ 450 000 premature deaths
 - Decrease in both scenarios
- Ozone
 - 60 000 premature deaths
 - Increase in 2050 under Business as Usual scenario
 - Decrease with climate mitigation

2005

2050 BaU2050 Mit

Cost Benefit analysis Synthesis

- The cost of climate mitigation is compensated by
 - Savings in air quality mitigation (less end-of-pipe measures required in low-carbon economy)
 - Reduced health damage

- France has developped a new approach to overcome pollution episodes based on forecast and near real time observations
- Europe has already a solid legislation on air quality even if standards are lower than WHO, and targets are not reached yet
- Monetised cost benefit analyses are a relevant instrument to support mitigation measures

