Creation and characterization
of defects in a BEC of Sodium
atoms

Marek Tylutki
Franco Dalfovo

Lab team Lev PitaevsKkii

Theoretical support

INO-CNR

N[ 1sTITUTO
Jl| NAZIONALE DI
OTTICA

== PROVINCIA

AUTONOMA
DI TRENTO

EXS2014 — 29 October 2014



Outline

e Phase transitions and Kibble-Zurek mechanism

* Observation of KZM in elongated BEC

e Observation of solitonic vortices in elongated BEC
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Phase transitions involving an order parameter

Set of parameters
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Phase Transitions at finite rate

time

State A

State B

Domain
formation
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Quenches and Kibble-Zurek mechanism
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- Spontaneous creation of defects
- 2nd order phase transition
- finite rate crossing

~
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Quenches and Kibble-Zurek mechanism
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i b\e-l\“ek - Spontaneous creation of defects
Kib nanism - 2nd order phase transition
mec - finite rate crossing
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Main prediction: defect density
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Power-law scaling

v,z: critical exponents

D: system dimension /‘ .
d: defect dimension * / D
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Quenches and Kibble-Zurek mechanism
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Quenches and Kibble-Zurek mechanism

Second-order phase transition;
Order parameter (complex macroscopic wave function);
Temperature quenches.

KZM in atomic BECs:

Pancake-shape —> VORTICES Cigar-shape —> SOLITONS (?)
T [ = J[==
| = |
SLOw FAST
0
Weiler et al., Nature 455, 948 (2008) Lamporesi et al., Nature Physics 9, 656 (2013)
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Observation of KZM in elongated BEC

N Temperature quench at
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Observation of KZM in elongated BEC

From slow ramps to
fast ramps, the number
of defects grows

-—)

Average number
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guench time
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Observation of KZM in elongated BEC

§ o o, O N, =25%x10°8
= " 8 N, =4 x 106
o ~
< 10} he %
3 Php s
3 } H
g 0.1
" - 8
KZM prediction: N LT g | |
S Q 102 103
Power-law scaling (a=1.4) !! 7q (ms)

1
EXS2014 — 29 October 2014



Observation of KZM in elongated BEC ) :
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Del Campo et al., NJP 13, 083022 (2011)

v,z: critical exponents

D: system dimension /‘ .
d: defect dimension / D

Homog. KZM: [Tc ,T]

Our system:
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Zurek, PRL 102,

105702 (2009)

Inhomog. KZM: [Tc(x), T ]
[ Tc(x), T(x)]




Observation of KZM in elongated BEC ” - TR
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oliton defects born'
= of phase transition

Lamporesi et al., Nature Physics 9, 656 (2013)
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Observation of KZM in elongated BEC

New measurements for different values

of aspect ratio

defect number
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Aspect ratio=v, /v,

Two open issues (under investigation):

EXS2014 — 29 October 2014



Observation of KZM in elongated BEC

New measurements for different values
of aspect ratio

defect number

10~

102

Aspect ratio=v, /v,

Two open issues (under investigation):

+¢ Origin of the universal plateau at
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fast quenches
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Observation of KZM in elongated BEC

New measurements for different values
of aspect ratio
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aspect ratio

Aspect ratio=v, /v,

Two open issues (under investigation):

+¢* Origin of the universal plateau at
fast quenches

+» Dependence of a on aspect ratio

/

7/3 : KZM for vortex line in a 3D BEC

7/6 : KZM for soliton planes in a 3D BEC
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Observation of solitonic vortices in elongated BEC

Crucial question: what are these defects?

solitons?

. ? .
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Observation of solitonic vortices in elongated BEC
_____________________________________________________________________________________________________________________|

Crucial question: what are these defects?

solitons?

something else?

In favor of solitons: Against solitons: very long life time

planar structure
c 14
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See also Yefsah et al., Nature 499, 426 (2013), for fermions
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Observation of solitonic vortices in elongated BEC

Crucial question: what are these defects?

solitons?

Key parameter:

W Ry
y=— = ——

=h(1)¢_ 2%

In favor of solitons:
planar structure

~—

Yc

0

... and to decay into vortex rings or
other excitations.

Solitons are expected to be unstable
THERMALLY (due to thermal dissipation)
DYNAMICALLY (due to snake instabilities)

g

A

v > 30

E n .
spherical BEC (JILA)

Anderson et al.,
PRL 86 2926 (2001)
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Observation of solitonic vortices in elongated BEC
_____________________________________________________________________________________________________________________|

Crucial question: what are these defects?

solitons?

Note: we often observe
point-like density minima
associated with a twist of the
planar density depletion
(after expansion)

In favor of solitons:
planar structure

~—

v > 30

EXS2014 — 29 October 2014



Observation of solitonic vortices in elongated BEC
_____________________________________________________________________________________________________________________|

Crucial question: what are these defects?

solitons?

Note: we often observe
point-like density minima
associated with a twist of the
planar density depletion
(after expansion)

In favor of solitons:

planar structure ‘

Solitonic vortices ?

v > 30
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Observation of solitonic vortices in elongated BEC
_____________________________________________________________________________________________________________________|

Solitonic Vortex: vortex oriented perpendicularly to the axis of an axisymmetric elongated trap.

- Quantized vorticity
- Anisotropic phase pattern

- Planar density depletion
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spherical trap. On the other hand. it is curious that the pre-

above. The predicted decay of the band soliton into a single
SV has not been seen. or predicted. before and should be
easily observable with current experimental techniques.

dicted solitonic vortex has not yet been seen in experiment.

Komineas et al., PRA 68, 043617 (2003)

Brand et al., PRA 65, 043612 (2002)
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Observation of solitonic vortices in elongated BEC

0 phase of order parameter

/4 l,

vortex with
isotropic flow

/2 ./

solitonic vortex 0 /4 f

angle around the vortex core

—

large phase

gradients in , _
narrow region ‘ high super'ﬂwd
flow velocity

’ density depletion to
reduce kinetic

energy
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Observation of solitonic vortices in elongated BEC

Numerical simulations:
Solution of Gross-Pitaevskii equation (2D and 3D BECs)

y =10 density (in trap)
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Observation of solitonic vortices in elongated BEC

Numerical simulations:
Solution of Gross-Pitaevskii equation (2D and 3D BECs)

—' phase (in trap)
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Observation of solitonic vortices in elongated BEC
_____________________________________________________________________________________________________________________|

Numerical simulations:
Solution of stationary Gross-Pitaevskii equation (2D and 3D BECs)

density (in trap)

n, : density along the axis (half a way n, : density in the radial plane (half a
from center to border) way from center to border)
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Observation of solitonic vortices in elongated BEC

Numerical simulations of free expansion (releasing the atoms from the trap):
solution of time dependent Gross-Pitaevskii equation

Solitonic Vortex Soliton N
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The plane is twisted

around the vortex line ! Strong enhancement of density

depletion in the plane!
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Observation of solitonic vortices in elongated BEC

Back to the experimental observations:

Long lifetime, planar density depletion, twisted plane
around a hole, suggest that defects may be solitonic

vortices.

What next?

—~—

1
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Observation of solitonic vortices in elongated BEC
_____________________________________________________________________________________________________________________|

Back to the experimental observations:

Long lifetime, planar density depletion, twisted plane
around a hole, suggest that defects may be solitonic
vortices.

What next?
We add an imaging system also in the third direction

We see the vortex line 1!

1
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Observation of solitonic vortices in elongated BEC

Radial + Axial Imaging (3 axes)

Planar structure (twisted)
+

String across BEC (radial)
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Observation of solitonic vortices in elongated BEC
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Observation of solitonic vortices in elongated BEC

We can directly observe the phase of the quantized vortex by Bragg interferometry

VORTEX ANTIVORTEX
t1=20ms o '
t2=1.5ms /
t3=98.5ms

output A output B

output A output B output A output B

Bragg T=8Us . . .
Pulse | =12 mW/cm? * Signature: double dislocation

* Sign of circulation

fringe spacing: =_ 5

md =
Donadello et al., PRL 113, 065302 (2014) g’) I J
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Observation of solitonic vortices in elongated BEC

Coming back to the crucial question: what are these defects?

solitons?

The answer is: we observe solitonic vortices
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Observation of solitonic vortices in elongated BEC

Coming back to the crucial question: what are these defects?

solitons?

The answer is: we observe solitonic vortices

The next open question:
Are they the decay products of KZM solitons created at the transition?

Or, are they directly created by KZM at the transition?

Work in progress
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Post-quench dynamics

Work in progress

Iterated out-coupling of small fractions af a BEC

In trap: N=5 ML atomsin |F=1, mF=-1>

Outcouple #1: N=0.4 ML (8 %) atoms to |F=2, mF=0 >
Free expansion

Free fall due to gravity

Move through the trapped BEC
5 ms expansion

Shot every 30 ms

Outcouple #2: N=0.4 ML (8 %) atoms to |F=2, mF=-2 >
Antitrapping expansion

Fast motion due to gravity+magnetic force

5 ms expansion
Shot every 70 ms

We will add a hold beam to

compensate for gravity...
.
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Summary & Prospects

Creation of defects through quenches

KZM, power-law scaling

KZM, different geometries

Defect lifetime

Solitonic vortices
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Lamporesi et al., Nature Physics 9, 656 (2013)

Inews & views|

Donadello et al., PRL 113, 065302 (2014)
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