Experiments with ultracold, disordered atomic bosons

Giovanni Modugno

LENS and Dipartimento di Fisica e Astronomia, Università di Firenze

EXS2014, ICTP, Trieste

only partially understood in theory; very few experiments

One dimension. Main results from theory:

- Anderson localization depends only weakly on energy
- Bose-Einstein condensation is marginal
- a small E_{int} competes with disorder and tends to restore superfluidity
- for E_{int}/E_{kin}>1 the bosons progressively behave like non-interacting fermions and get again localized

Disordered bosons at T=0

In a lattice: non-trivial competition between Bose glass, Mott insulator and superfluid, depending on the site occupation n

Disordered, interacting bosons: experiments

Quantum magnets:

thermodynamical systems tuning of disorder and interactions is hard

Cold atoms:

tuning of disorder and interactions is possible inhomogeneous, temperature control is hard

Fallani et al., PRL 98 (2007)

Pasienski et al., *Nat. Phys.* **6** (2010); Gadway et al., PRL **107** (2011)

The quasi-periodic lattice

Aubry-Andrè model with metal-insulator transition at $\Delta=2J$ Exponentially localized states with uniform ξ_{LOC}

Interaction tuned via a Feshbach resonance (³⁹K atoms)

$$U = \frac{2\pi \ \hbar^2}{m} \ a \ \int \varphi^4 dx$$

S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980). Theory by M. Modugno, A. Minguzzi, ...

One-dimensional lattices

Quasi-1D: the radial trapping energy much larger than the other energy scales

Longitudinal trapping: inhomogeneity

Coherence from momentum distribution

Coherence from momentum distribution

D'Errico, Lucioni et al., Phys. Rev. Lett. 113, 095301 (2014)

The small-U line is from P. Lugan, et al., Phys. Rev. Lett. 98, 170403 (2007), ...

Transport: mobility measurements

Excitation spectra

Ströferle et al., Phys. Rev. Lett. 92, 130403 (2004), lucci et al. Phys.Rev. A 73, 041608 (2006); Fallani et al., PRL 98, 130404 (2007).

Excitation spectra vs non-interacting fermions

excitation spectrum of non-interacting fermions (correlation function of the hopping operator)

G. Orso et al., Phys. Rev. A 80 033625 (2009) G. Pupillo et al, New. J. Phys. 8, 161 (2006).

(c) ₃⊧ **∆=0** n(x) 0^{LLm}_{-30} -20 -10 10 20 30 x (units of d) (d) ₃ Δ=6.3J n(x)0 30 -30 -20 -10 0 10 20 x (units of d)

Density by DMRG

Theory by T. Giamarchi (Geneva), G. Roux (Orsay)

Finite-T effects and comparison with theory

Finite-T effects: large U

Thermal broadening appears only above a sizable crossover temperature.

The strongly-correlated Bose glass survives at the experimental temperatures (an effect of the "Fermi energy" of fermionized bosons).

We have evidence of a large thermal broadening, but...

... the mobility does not show a relevant change with temperature.

Relation with many-body localization?

(Aleiner, Altshuler, Shlyapnikov, Nature Physics 6, 900 (2010); Michal, Altshuler, Shlyapnikov, arXiv.1402.4796.)

Transport revisited: clean system

L.Tanzi, et al. Phys. Rev. Lett. 111, 115301 (2013)

Transport revisited: disordered system

The critical momentum is reduced by disorder

As $p_c \rightarrow 0$: the SF to IN crossover from a generalized Laundau criterion

Fluid-insulator crossover from transport

First steps towards a quantitative analysis of Bose glass and many-body localization physics in 1D

Theory: P. Lugan, et al., Phys. Rev. Lett. 98, 170403 (2007), L. Fontanesi, et al., Phys. Rev. A 81, 053603 (2010), Altman et al.,

Non interacting particles in 3D disorder

There is a critical energy for localization (Anderson transition): P. W. Anderson, Phys. Rev. 109, 1492 (1958) , ...

Not yet measured in experiments!

Simple picture of the mobility edge

50 years of theory of Anderson localization!

e.g. E. Abrahams ed. World Scientific 2013

Experiments on Anderson localization in 3D

Light waves: Sperling, et al. Nat. Photonics (2012), Wiersma et al,

Sound waves: Hu et al, Nat. Physics 4, 945 (2008).

Atomic kicked rotor: a momentum space version of the Anderson model Chabé et al. Phys. Rev. Lett. 101, 255702 (2008), ...

Kondov et al, Science 334,63 (2011)

F. Jendrzejewski et al, Nat. Physics 8, 398 (2012)

3D speckles disorder

Same coherent speckles as in Palaiseau

but ³⁹K atoms with tunable interaction

Semeghini, Landini et al., arXiv:1404.3528

Quasi-adiabatic preparation

Optimized by minimizing the kinetic energy

Time evolution of the spatial distribution

From diffusion to localization

Momentum distribution

The momentum and energy distributions are related by the spectral function $\rho(E,k)$: probability of having a momentum k at an energy E

Energy distribution from momentum distribution

 $n(k) = \int \rho(E,k) f(E) dE \qquad f(E) \approx \exp(-E/E_m)$

$$n(E) = \int \rho(E,k) f(E) dk = g(E) f(E)$$

Excitation spectroscopy

$$\Delta(\mathbf{r},t) = \Delta(\mathbf{r})(1 + A\cos(\omega t))$$

time

In the linear regime: $P(\omega) \approx \sum_{i,f} f(E_i) \langle f | \Delta(\mathbf{r}) | i \rangle^2 \delta(E_f - E_i - \hbar \omega)$

Excitation spectroscopy

Fitting model for the mobility edge:

$$N(\omega) = \int_0^{E_c} n'(E,\omega) dE$$

$$n'(E,\omega) = (1-p)n(E) + pn(E - \hbar\omega)$$

p and E_c are fitting parameters

Excitation spectroscopy

The mobility edge

Outlook

Open questions:

- Anderson localization with interactions: many-body localization?
- the Bose glass at finite temperature (without Mott physics)
- BEC in disorder

The team

One dimension:

Chiara D'Errico Eleonora Lucioni

Luca Tanzi

Lorenzo Gori

Avinash Kumar, Saptarishi Chaudhuri **Theory:** Guillaume Roux, Ian Mc Culloch, Thierry Giamarchi

Three dimensions:

Manuele Landini

Giulia Semeghini

Patricia Castilho, Sanjukta Roy, Andreas Trenkwalder, Giacomo Spagnolli, Marco Fattori, Massimo Inguscio

