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the Bose-Einstein condensate (56, 57), a wide range of research was performed in this

configuration (28). Furthermore, the research has been extended to quantum degenerate

Fermi gases (58) and to Bose-Fermi mixtures (59).

The strongly correlated physics of the Bose-Hubbard model became accessible in an

experimental setup with three standing laser waves intersecting at the position of the

condensate. The predicted quantum phase transition (11, 60) between a spatially coherent

superfluid and a Mott-insulating state showed up in a sudden disappearance of the

spatial coherence when the ratio between collisional and kinetic energy reached a critical

value (12). The reversibility of this process and the gapped excitation spectrum of the Mott

insulator were the subjects of early studies (12, 61, 62). Another experimental path was to

freeze the atomic motion along two directions and to study one-dimensional Bose gases

(63–66). Many fascinating aspects of these strongly correlated Bose systems have been

reviewed in Reference 25.

More recently, an atomic Fermi-Hubbard model could be realized by loading a quan-

tum degenerate gas of fermionic atoms into a three-dimensional optical lattice potential

(19). This has directly connected the research frontiers in quantum gas and condensed

matter physics.

THE FERMI-HUBBARD MODEL IN AN ATOM TRAP

An optical lattice created by three mutually perpendicular laser standing waves gives rise to

a periodic potential of the form Vlat ¼ V0x cos2ðkxÞ þ V0y cos2ðkyÞ þ V0z cos2ðkzÞ, where

k ¼ l/2p is the wave vector of the lattice laser (see Figure 1). The lattice constant d is related

to the laser wavelength l by d ¼ l/2. A symmetric lattice corresponds to V0 ¼ V0x,y,z. The

lattice depth V0 is proportional to the laser intensity and inversely proportional to the

detuning between laser frequency and atomic transition frequency (43). The values V0x,y,z

are usually assumed to be constant, which is justified for a region in the trap center and which

is small compared with the Gaussian beam waists. Interference terms between the three

standing waves can be avoided by choosing suitable polarizations and frequency offsets for

the standing waves (12). The lattice depth V0 is often expressed in terms of the recoil energy

Er ¼ ð!hkÞ2=2m, which is the kinetic energy of an atom with mass m and the momentum !hk
of a single lattice photon.

For deep enough lattice potentials, the atomic field operators can be expanded in

terms of localized Wannier functions, and the atomic motion is determined by tunnel-

ing between adjacent sites. In the lowest band, direct tunneling to next to nearest

neighbors is typically suppressed by one order of magnitude compared with nearest

neighbor tunneling (11). In most experiments, the Fermi gas is prepared in a mixture

of two spin states, which correspond to different magnetic sublevels of the atomic

ground state. The collision between two atoms in different spin states residing on the

same lattice site gives rise to a short-ranged interaction. With all atoms prepared in the

lowest band, this concept leads to the Hubbard Hamiltonian (11) and is illustrated in

Figure 2.

For a two-component gas of fermionic atoms, the Hubbard Hamiltonian in an optical

lattice reads

H ¼ %t
X

hi,ji,s
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high-energy eigenstates, which are localized in the outer regions of the trap, can be identi-

fied (68–72). A very convenient measure in a harmonic trap with a geometric mean

trapping frequency !o is the characteristic atom number N0 ¼ ðW=m!o2d2Þ3=2 (70, 71). It

relates the bandwidth to the trapping potential and defines the number of trapped atoms

per spin state, which corresponds to half-filling in the trap center at zero temperature. The

related characteristic filling r ¼ N/N0 can be controlled in the experiment by changing the

total atom number N, the trapping frequencies, or the bandwidth.

Many-Body Physics with Attractive and Repulsive Interactions

The many-body physics of the Fermi-Hubbard model is governed by the interplay between

interaction, delocalization, and spin ordering, and it covers a wide range of phenomena. In

the following, I concentrate on those aspects that are most relevant to the current and near

future experimental situations. In optical lattice experiments, it is possible to make all

relevant energy scales small compared with the energy gap between the lowest and the

next higher Bloch band. The physics is then determined by the energy scales of the band-

width W and the interaction energy U. The next lower energy scale is the superexchange

energy t2/U, which describes virtual tunneling processes. The minimum experimentally

achievable temperatures in optical lattices are, at this time, still too high to access this

physics of the spin-sector. Due to the trapping potential, there is a further low-energy scale,

which is the energy separation between adjacent lattice sites.

The attractive-U Hubbard model, where the on-site interaction energy between parti-

cles of different spin is negative, has been extensively studied in the context of supercon-

ductivity (73). For the homogenous case, i.e., without trapping potential, the general

situation is the following: At low temperatures, s-wave superfluidity with a BEC-BCS

crossover is expected (74) (see Figure 3). The BCS regime is characterized by weak attrac-

tive interactions between the particles (U<<t) and the critical temperature increases with

jUj/t. In the BEC regime, the strong interactions lead to bound pairs that can undergo BEC,

with the critical temperature decreasing as t2/jUj. The pairs can be regarded as hard-

core bosons, and the tunneling of the pairs is dominated by second-order tunneling t2/U.

AFM

U

Mott
insulating

BCSBEC
SF

RepulsiveAttractive

Preformed
pairs

Temperature

NormalNormalNormal

Figure 3

Schematic phase diagram for the attractive and repulsive Hubbard model at half-filling for a simple
cubic lattice in three dimensions (see, for example, Reference 73). Abbreviations: BEC, Bose-Einstein
condensation; BCS, Bardeen-Cooper-Schrieffer; SF, superfluid; AFM, anti-ferromagnetic phase.
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