

Superconductivity and quantum phase transition at oxides interface

Jérôme Lesueur

Physics and Materials Laboratory (LPEM) ESPCI – CNRS – UPMC Paris

Quantum Phase Transition in a 2D superconductor

- Superconductor-Insulator Quantum Phase Transition (QPT) in 2D
- Many experimental results
- Open questions
 - Nature of the "Insulating State" : fermionic vs bosonic scenario

2 DEG at oxides interfaces

An extreme two-dimensional superconductor

Superconductor-insulator transition induced by field effect

Two main questions

Tunable superconductivity in oxide 2DEG

Quantum phase transition under magnetic field

Conclusions

Tunable superconductivity in oxide 2DEG

Quantum phase transition under magnetic field

Conclusions

Two types of carriers for positive gate voltage

Self consistent calculation : band bending model

Poisson Equation

 $\epsilon_R(F) = \epsilon_R(\infty) + \frac{1}{(A+BF)}$

Solutions of the model ($V_G \neq 0$)

High Mobility Carriers at the edge : Superconductivity

Superconductivity is triggered by minority mobile carriers that extend in SrTiO₃

Superfluid density measured by scanning probe : n_S ~ (5.10¹²cm⁻²) Bert et al, PRB (2012)

Superconductivity related to mobile carriers ?

Superconductivity : not simply the bulk ...

Superconductivity ... and disorder ?

Superconductivity ... and ϵ_R ?

- Bulk STO dielectric constant restored
- STO Superconductivity ???
- Polar properties of STO
- ➡ cf Koonce, Appel, Takada …

Superconductivity ... a possible scenario

Superconductivity ... a simple model

Superconductivity ... a simple model

Superconductivity ... a simple model

Superconductivity ... inhomogeneous medium

S. Caprara et al, Phys Rev B (R) 88, 020504 (2013)

D. Bucheli et al, New J. of Phys. 15, 023014 (2013)

cf M. Grilli's talk

First conclusions about superconductivity

Presence of inhomogeneous superconducting behavior

S. Caprara et al, Phys Rev B (R) 88, 020504 (2013)

Tunable superconductivity in oxide 2DEG

Quantum phase transition under magnetic field

Conclusions

Magnetic field driven quantum phase transition

Suppression of superconductivity by a perpendicular magnetic field at V_G=80V

Transition from superconducting to weakly localized metallic state

Magnetic field driven quantum phase transition

Suppression of superconductivity by a perpendicular magnetic field at V_G=80V

 \Rightarrow Crossing point at B_×: a first signature of a quantum phase transition

Scaling and critical exponents

Finite size scaling analysis

Scaling Behaviour with zv = 2/3 (as in a-Bi, NbSi, ...)

Superfluid transition in charged system : z=1

Universality Class : (2+1)D XY in the clean limit : v = 2/3 (Quantum Phase Fluctuations)

Disordered systems : Harris criteria sets v > 1

Harris, J Phys. C Solid State, 1974

A true quantum Phase Transition ?

Scaling does not work at low temperature !

Scaling at lower temperature

Magnetic field driven quantum phase transition

■ Suppression of superconductivity by a perpendicular magnetic field at V_G=-15V

Plateau in the resistance down to the lowest temperature !

Scaling and critical exponents

Critical fields as a function of V_{G}

→ Two different regions ($B_x = B_c \& B_x \neq B_c$)

 \Rightarrow B_x is constant in Region I

Biscaras et al, Nature Mat. 12, 542 (2013)

Critical exponents as a function V_{G}

 \Rightarrow Multiple Critical Behavior (B_x & B_c) associated to different critical exponents

Multiple Quantum Critical Behaviors in 2D SC

Disordered array of SC puddles

Spivak et al, PRB 2008

Characteristic puddle size L_d

Puddles coupled by Josephson through G_{2DEG}

Phase length $L_{\Phi} \sim T^{-1/z}$

Phase fluctuations in the puddles and between puddles : two critical fields

- Puddles may be not SC if the coupling is too weak : two regimes (G_{2DEG})
- The critical field B_c scales like T_c

Towards a scenario ...

 \blacksquare Divergence of the thermal dephasing length L_{Φ}^{-} T^{-1/z}

- Low temperature T < T_d
 L_Φ> L_d "disordered" system
 v > 1 (Harris criteria)
- High temperature T > T_d

 $L_{\Phi} < L_{d}$ "clean" system

The puddles scenario

■ High G_{2DEG} regime for V_G> 20V

B_x destroys superconductivity inside puddles

Typical size of a puddle

$$L_{d} = \sqrt{\Phi_{0} / B_{\star}} \approx 100 nm$$

 \Rightarrow B_c destroys superconductivity of the array

The puddles scenario

■ Low G_{2DEG} regime for V_G< 20V

- \Rightarrow a single critical field $B_c = B_x$
- Puddles are always fluctuating

➡ B_c destroys superconductivity of the array

High temperature

"clean"

 $z_{v} = 2/3$

B-T phase diagrammes

Biscaras et al, Nature Mat. 12, 542 (2013)

Tunable superconductivity in oxide 2DEG

Quantum phase transition under magnetic field

Conclusions

Conclusions

Phd students : <u>Johan Biscaras</u> – Simon Hurand – Alexis Jouan Collaborators : N. Bergeal, C. Palma, LPEM (Paris)

A. Rastogi, ITT Kanpur (India)

R. C. Budhani, ITT Kanpur & NPL Dehli (India)

C. Proust, D LeBoeuf, LNMCI Toulouse (France)

A. Barthelemy, M. Bibes, J. Villegas, N. Reyren UMR Thales-CNRS (Palaiseau)

M. Grilli, S. Caprara, L. Benfatto, La Sapienza (Rome)

Biscaras et al, Nature Com. 1, 89 (2010)

Biscaras et al, Nature Mat. 12, 542 (2013)

Biscaras et al, PRL 108, 247004 (2012)

Caprara et al, PRB(R) 88, 020504 (2013)

THALES

Phd students : Johan Biscaras – Simon Hurand

Collaborators : N. Bergeal, C. Palma, LPEM (Paris)

A. Rastogi, ITT Kanpur (India)

R. C. Budhani, ITT Kanpur & NPL Dehli (India)

C. Proust, D LeBoeuf, LNMCI Toulouse (France)

A. Barthelemy, M. Bibes, J. Villegas, N. Reyren UMR Thales-CNRS (Palaiseau)

M. Grilli, S. Caprara, L. Benfatto, La Sapienza (Rome)

Biscaras et al, Nature Com. 1, 89 (2010)

Biscaras et al, Nature Mat. 12, 542 (2013)

Biscaras et al, PRL 108, 247004 (2012)

Caprara et al, PRB(R) 88, 020504 (2013)

