Current patterns and optical conductivity in disordered superconductors:

C.Castellani

Collaborations L.Benfatto and J.Lorenzana (Roma), G.Seibold (Cottbus) G.Lemarié (Toulouse), D.Bucheli, T.Cea (PhD,Roma)

References: Seibold et al. PRL 108, 207004 (2012) G. Lemarié et al. PhysRevB 87, 184509 (2013) Cea, Bucheli, Seibold, Benfatto, Lorenzana, and Castellani, PhysRevB 89,174506 (2014).

Disappearing of SC by increasing disorder

• "Fermionic" vs "bosonic" mechanism

Superconductor-Insulator Transition (SIT)

"Fermionic" mechanism (Finkelstein): disorder enhances Coulomb repulsion, pairing strength decreases, both Tc and Δ go to zero \Rightarrow FM or FI "Bosonic" mechanism (Fisher, Ma & Lee, etc.) direct localization of Cooper pairs, finite pairing in the insulating phase

Jim Valles , Leiden 2011 Thickness tuned SIT: amorphous Bi films Uniform Nano-honeycomb (50nm)

- $\Delta_{gap} \Rightarrow 0 \text{ as } T \Rightarrow Tc$
- Insulator : Weakly localized electrons
- Small positive MR

- Δ_{gap} ≠0 at T>T_c
- Localized Cooper Pairs with activated transport $R=R_0e^{To/T} T_0 \Rightarrow 0$ at SIT
- Giant positive MR

Bosonic mechanism at work ≠from granular

Jim Valles , Leiden 2011 Thickness tuned SIT: amorphous Bi films Uniform Nano-honeycomb (50nm)

- $\Delta_{gap} \Rightarrow 0 \text{ as } T \Rightarrow Tc$
- Insulator : Weakly localized electrons
- Small positive MR

- Δ_{gap} ≠0 at T>T_c
- Localized Cooper Pairs with activated transport $R=R_0e^{To/T} T_0 \Rightarrow 0$ at SIT
- Giant positive MR

Trivial consequence of artificial nanostructure

Superconductor to insulator transition: bosonic mechanism at work

- Homogeneous InO, TiN, NbN films share the same features : ∆_{gap} stays ≠0 above T_c activated transport R=R₀e^{To/T}, giant positive MR
- Are they inhomogeneous? Effectively inhomogeneous?
- General mechanism for inhomogeneity?

Ioffe and Mezard proposal for disordered superconductors

 low temperature glassy phase (with onestep replica symmetry breaking):
 self-generated inhomogeneity on a mesoscopic scale (much) larger than the scale of disorder and of pairing (ξ_{sc})

Ioffe and Mezard, PRL 105, 037001 (2010); Feigelman, Ioffe and Mezard, PRB 82, 18534 (2010)

Ioffe and Mezard proposal for disordered superconductors

• Ising model in a transverse random field (strong coupling pairing with $\langle \sigma^x_i \rangle$ = superconducting order parameter) on a Cayley tree with K-branching

$$H = -\sum_{i} \xi_{i} \sigma_{i}^{z} - g / K \sum_{\langle ij \rangle} \sigma_{i}^{x} \sigma_{j}^{x}$$

• Cavity methods: recursion formula for the Weiss field acting on σ^{x}_{i} (and mapping to directed polymer problem)

boundary

At low T only few paths contribute to pairing susceptibility. Self-generated quasi-1d inhomogeneity, non self-averaging properties, anomalous distribution of the local order root parameter $s = <\sigma_i^x >$

Ioffe and Mezard proposal for disordered superconductors

Various questions:

- Quasi-1d, non self-averaging and anomalous distribution will survive from Cayley tree to real lattices (2d)? (The replica symmetry breaking issue in finite d)
- Intrinsically strong coupling (bosonic) model: what for a fermionic model of superconductivity from weak to strong coupling? ⇒ attractive Hubbard model
- Price to pay: from cavity methods to mean field, however MF can be a reasonable description of the ordered phase
- Study of distribution (static) and optical conductivity (dynamics)

The attractive Hubbard model

 we consider the attractive Hubbard model with on site disorder

$$H = -t \sum_{\langle ij \rangle,\sigma} a_{i\sigma}^{+} a_{j\sigma} - \left| U \right| \sum_{i} n_{i\uparrow} n_{i\downarrow} - \sum_{i\sigma} \xi_{i} n_{i\sigma}$$

 and solve the mean field Bogoliubov-de Gennes eqs on a 2d finite cluster at T=0 with site dependent SC order parameter Δ_i= | U | <a⁺_{↑i}a⁺_{i↓} > , and-V₀<ξ_i<V₀

The attractive Hubbard model

- Parameters: t=1, U=1.5÷10, V₀=0.1÷3,<n>=0.1÷1
- Various known results from previous BdG and Monte Carlo. Huge literature. See: Ghosal, Randeria and Trivedi, PRL(1998) and PRB (2001)
- Even for not too large U (with V₀~1) superconductivity is established by coherence of local pairs. Cfr: Feigelman et al Ann.Phys (2010)
- Strong variations of local SC order parameter Δ_i ($\leq \Delta_{gap}$ spectral gap from local Density of States) "superconducting islands" (inhomogeneity)

The attractive Hubbard model

- Distribution of the local order parameter $s_i=2\Delta_i/U=2 < a_{\uparrow i}^+ a_{i\downarrow}^+ > \Leftrightarrow < \sigma_i^x >$. Note: Δ_i is not the DOS gap, it is a measure of coherence
- predictions of FIM in the ordered phase: P(s) ~s^m_{typ}/s^{1+m} for large s, with m <1.
 "Unbounded" distribution but for the physical constraint s≤1. Averaged <s> >> s_{tvp}

with s_{tvp} =exp<lns>

 We find a qualitative agreement (broad P(s)), but a different distribution

Very crowded:

Hubbard U=5, $g=t^2/UV_0=0.08$, n=0.85 U=5, g=0.2,n=1 XX-Z 2DCMF (Monthus and Garel 2012), $g=J/V_0=0.4$ MF, g=0.2 (dasheddotted) FIM: Cayley, K=3, g=0.2(dotted)

Universal by rescaling $R=(Ins-Ins_{typ})/\sigma_s$

$$lns_{typ} =$$

 $\sigma_s^2 = <(lns - lns_{typ})^2 >$

Hubbard U=5, $g=t^2/UV_0=0.08$, n=0.85 U=5, g=0.2,n=1 XX-Z 2DCMF (Monthus and Garel 2012), $g=J/V_0=0.4$ MF, g=0.2 (dasheddotted) FIM: Cayley, K=3, g=0.2(dotted)

- Universal distribution
- the rescaling seems to work in a wide range of parameters, with the variance $\sigma_{\rm s} {\sim} {-} {\rm lns}_{\rm typ}$ increasing for increasing disorder
- In the disordered phase analogy with directed polymer problem physics in 2D: Ins_L= -c L+L^ω u with ω≈1/3>0 (ω=0 on the Cayley tree)
 L=distance from ordered boundary, u=random variable with Tracy-Widom distribution
- Tracy-Widom is reasonably good also for ordered phase

 Comparison with experimental data on NbN films from Tata Institute group (Pratap Raychaudhuri and collaborators)
 Hypothesis: Δ(r) correlates with relative height of coherent peaks in local density of states in STM (Sacépé et al, Nature Phys. 7, 239, (2011): STM in InO films)

Lemarié et al. PRB 87, 184509 (2013) STM in NbN films

Lemarie et al. PRB 87, 184509 (2013) STM in NbN films

Define peak height $h=(G_{peak}-G_{min})/G_{min} \propto SC$ order parameter s

Lemarie et al. PRB 87, 184509 (2013) STM in NbN films

Distribution of the local peak height $h \propto SC$ order parameter **s**

Rescaled distribution $R_s = (ln s - ln s_{typ})/\sigma_s$

Inhomogeneity and glassy physics

• The emergent mesoscopic inhomogeneity is a signature of "glassy" superconductivity?

Inhomogeneity and glassy physics

 What about currents, superfluid density and optical conductivity in the strong disordered regime?

- It is a tricky job, even within MF: in a clean system $J_q = \chi^{BCS}(q)A_q$ and $\chi^{BCS}(q \rightarrow 0)$ gives the superfluid density D_S with χ^{BCS} given by the bubble expression with no vertex corrections.
- χ^{BCS} is not gauge invariant, but it is enough since a transverse **A** does not change the phase of the SC order parameter Δ
- In the presence of disorder this is wrong! We solve the BdG eqs in the presence of A and evaluate the related local current density J(r)

Current patterns

$$H = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + \sum_{i,\sigma} (V_i - \mu) n_{i\sigma} - |U| \sum_i n_i \uparrow n_i \downarrow. \qquad \Delta_i \equiv |U| \langle c_{i\downarrow} c_{i\uparrow} \rangle = |\Delta_i| e^{i\theta_i}$$

• Current in the presence of a finite transverse A, by allowing for the local phases θ_i of the BdG solutions to relax to the applied field A

G. Seibold, L.Benfatto, J. Lorenzana and C. Castellani PRL 108, 207004 (2012) Unidimensional patterns for the current: glassy-like behavior

Current patterns

$$H = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + \sum_{i,\sigma} (V_i - \mu) n_{i\sigma} - |U| \sum_i n_i \uparrow n_i \downarrow. \qquad \Delta_i \equiv |U| \langle c_{i\downarrow} c_{i\uparrow} \rangle = |\Delta_i| e^{i\theta_i}$$

• Current in the presence of a finite transverse A, by allowing for the local phases θ_i of the BdG solutions to relax to the applied field A

Unidimensional patterns for the current: glassy-like behavior

Optical conductivity with vertex corrections: *in-gap* spectral weight due to phase fluctuations

Optical conductivity with vertex corrections: *in-gap* spectral weight due to phase fluctuations

Optical conductivity with vertex corrections: *in-gap* spectral weight due to phase fluctuations

- Optical conductivity with vertex corrections: *in-gap* spectral weight due to phase fluctuations
- Can be derived also from the spin/hard-core boson model • i.e. $\mathcal{H}_{PS} \equiv -2\sum \xi_i S_i^z - 2J \sum (S_i^+ S_j^- + h.c.)$ (cfr Swanson 2013) (i,j)0.2 0.04 b) U/t=5, V/t=3.0 a) U/t=2, V/t=3.0 0.15 full full σ(ω)/σ₀ phase phase 0.1 0.02 bosonic bosonic 0.05 0 0 0.2 0.4Ό 0 ω/t ω/t boson parameters: D_{mf}^B=D^{BCS}, D_s^B/D_{mf}=D_s^F/D^{BCS}

- Optical conductivity with vertex corrections: *in-gap* spectral weight due to phase fluctuations
- Can be derived also from the spin/hard-core boson model

W/J=10

W/J=18

 $J_i^x = J \sin \theta_i \sin \theta_{i+x} =$ local diamagnetic term Optical absorption from "isolated"superconducting islands : "missing" superfluid current transferred in $\sigma(\omega)$, "superfluid" peak moves to finite frequency and dissipates

• A main objection:

Since intragap contribution to $\sigma(\omega)$ comes from phase modes (sound modes in clean systems) long range force spoils this effect by changing sound mode in high energy plasmons

• A main objection:

Since intragap contribution to $\sigma(\omega)$ comes from phase modes (sound modes in clean systems) long range force spoils this effect by changing sound mode in high energy plasmons

- J=σE, E is the internal field which includes induced charges: σ is evaluated by "irreducible" diagrams (like in a fictitious neutral system)
- Dielectric function $\varepsilon(\omega)=1+4\pi i\sigma(\omega)/\omega$

 ϵ (=1+4 π e²/q²K^{screen}) is the response to **E**

1/ε (=1-4πe²/q²K^{LR}) is the response to **E**₀. Average < ε> ≠ < ε⁻¹>⁻¹, which is relevant?

• In 2d we could take $V_c \propto 1/q$, and plasmon is \sqrt{q} . With disorder: low energy excitations are from local (high q) modes not strongly affected by long range force. We expect both averages to be qualitatively similar

Conclusions

- Disordered superconductors (near SIT): glassy physics?
- Anomalous $P(\Delta)$ distribution
- Quasi-1D current paths Physical view: coupled SC islands with large variation of Josephson couplings
- Intra-gap optical absorption (anomalies at G-THz?)
- Open problems: dynamics (long range forces), critical behavior at SIT and insulating phase (many body localization? True glass phase?)

Insulating peak

B-induced SIT in thin film of InO: Ovadia et al. arXiv 1406.7510

T dependence of R

Ovadia et al. arXiv 1406.7510

B-induced SIT in thin film of InO: Insulating phase

 $\sigma = \sigma_o \exp[-T_o/(T-T^*)]$

B-induced SIT in thin film of InO: Ovadia et al. arXiv 1406.7510

• Work in progress: define transport coefficients from average e.m. propagator $D = (D_0^{-1} + K)^{-1} \Rightarrow \overline{D} = (D_0^{-1} + \widetilde{K})^{-1}$ $D_0^{-1} = \left[(q^2 - \omega^2) \delta_{\alpha\beta} - q_\alpha q_\beta \right] \qquad \overline{A} = \overline{D}J_{ext}$ $\overline{J}(q, \omega) = -\widetilde{K}(q, \omega)\overline{A}$

$$1 + 4\pi i \tilde{\sigma}_L / i\omega = \langle (1/\varepsilon_L) \rangle^{-1}$$

 Preliminary results: by introducing long range forces depletion of low energy absorption towards higher energies, but still in the superconducting gap

Short range conductivity

Long range conductivity

Short range conductivity

Long range conductivity

A simple bosonic model in the clean limit: $S=\int dr dt \{1/2D_s(\nabla \theta - 2e/c\mathbf{A})^2 - 1/2\chi_0 (d\theta/dt)^2\}$ D_s superfluid density, χ_0 charghe compressibility Long range $\chi_0^{-1} \Rightarrow \chi_0^{-1} + V_c$, $V_c \propto 1/q$, $1/q^2$

Response to a longitudinal external field $J_L = -K_L^{red}A_L^0$, ($\sigma = K/i\omega$)

frequencies

$$K_L^{red}(q,\omega) = D_s \frac{\omega^2}{\omega^2 - \omega_P^2}$$
 ω_P plasmon

However $J_L = -K_L A_L$

 $K_L(q,\omega) = K_L^{red}(q,\omega)\varepsilon(q,\omega) = D_s \frac{\omega^2}{\omega^2 - \omega_s^2} \quad \omega_s \text{ sound frequencies}$ \Rightarrow Screening of long range, what in the presence of disorder?

Spin/bosonic model and H.P. appr.

$$\mathcal{H}_{PS} \equiv -2\sum_{i} \xi_{i} S_{i}^{z} - 2J \sum_{\langle i,j \rangle} \left(S_{i}^{+} S_{j}^{-} + h.c. \right).$$
$$\widetilde{S}_{i}^{z} = 1/2 - a_{i}^{+} a_{i}, \ \widetilde{S}_{i}^{+} \simeq a_{i} \text{ and } \widetilde{S}_{i}^{-} \simeq a_{i}^{+}.$$
$$\mathcal{H}_{PS}' = \sum_{ij} \left[A_{ij} (a_{i}^{\dagger} a_{j} + h.c.) + \frac{1}{2} B_{ij} (a_{i} a_{j} + h.c.) \right]$$
$$= \sum_{\alpha} E_{\alpha} \gamma_{\alpha}^{\dagger} \gamma_{\alpha} + const.$$

$$\Phi_{i} = -2\frac{S_{i}^{y}}{\sin\theta_{i}} = \sum_{\alpha} i\frac{\phi_{\alpha i}}{\sqrt{2}}(\gamma_{\alpha}^{\dagger} - \gamma_{\alpha}), \qquad a_{i} = \sum_{\alpha} \left(u_{\alpha i}\gamma_{\alpha} + v_{\alpha i}\gamma_{\alpha}^{\dagger}\right):$$
$$L_{i} = S_{i}^{\perp}\sin\theta_{i} = \sum_{\alpha} \frac{\ell_{\alpha i}}{\sqrt{2}}(\gamma_{\alpha}^{\dagger} + \gamma_{\alpha}), \qquad \phi_{\alpha i} = \sqrt{2}\left(v_{\alpha i} - u_{\alpha i}\right) / \sin\theta_{i}$$

Quantum phase model and $\sigma(\omega)$

Mean field for $\langle S_i^x \rangle = 1/2 \sin \theta_i$ and Holstein- Primakov transformation to a bilinear boson problem or equivalently to a quadratic phase hamiltonian

$$\begin{aligned} \mathcal{H}'_{PS} &= \frac{1}{2} \sum_{i,\mu=x,y} J_i^{\mu} \left[\Delta_{\mu} \Phi_i \right]^2 + \frac{1}{2} \sum_{ij} \mathcal{X}_{ij}^{-1} L_i L_j \\ J_i^{\mu} &\equiv J \sin \theta_i \sin \theta_{i+\hat{\mu}} & \Delta_{\mu} \Phi_i \rightarrow \Delta_{\mu} \Phi_i - 2eA_{\mu}, \\ \sigma_{reg}^B(\omega) &= \frac{e^2 \pi}{2N} \sum_{\alpha} Z_{\alpha} \left[\delta(\omega + E_{\alpha}) + \delta(\omega - E_{\alpha}) \right] \\ Z_{\alpha} &= \frac{1}{E_{\alpha}} \left[\sum_i 2J_i^{\mu} \Delta_{\mu} \phi_{\alpha i} \right]^2 . \\ D^B &= (1/N) \sum_i 4J_i^{\mu} & D_s^B = D^B - \frac{1}{N} \sum_{\alpha} Z_{\alpha} \end{aligned}$$

magenta dashed dotted line, BdG with |U| = 1.5, $\langle n \rangle = 0.875$, L = 25, g = 0.2, i.e., V₀ = 3.33.

Disorder driven Superconductor-Insulator transition in 3D NbN Mondal et. al (2011); Chand et al. (2012)

Inhomogeneity and glassy physics

Optical conductivity in disordered attractive Hubbard model

Optics in bosonic model

Optical conductivity in the bosonic model

Distributions of the superfluid density with increasing lattice size

U =5t, V₀=2t n=0.85

Current-current correlations

