Second sound and the superfluid fraction in a resonantly interacting Fermi gas

Meng Khoon Tey

Tsinghua University China

Workshop on Probing and Understanding Exotic Superconductors and Superfluids

Trieste, 27-31 Oct 2014

Meng Khoon Leonid Tey Sidorenkov

Rudi Grimm

Sandro

Stringari

Lev Pitaevskii

UNIVERSITĂ DEGLI STUDI DI TRENTO

Outline

- Second sound
- Experimental results
- Obtaining temperature dependence of the superfluid fraction

Two-fluid model of superfluid helium

Lev D. Landau

a superfluid at finite temperature

= a superfluid component + a normal component

Two-fluid model of superfluid helium

$$n = n_n + n_s$$

normal part superfluid part

TWO sound modes are possible:

second sound in superfluid helium

Picture from Russell Donnelly, Phys. Today 62(10), 34 (2009)

First and second sound in superfluid helium

Significance of second sound

Second sound in BEC

Stamper-Kurn et al, Phys. Rev. Lett. 81, 500–503 (1998), Mappelink et al., Phys. Rev. Lett. 103, 265301 (2009), Mappelink et al., Phys. Rev. A 80, 043605 (2009).

Differences from second sound in Helium II:

Second sound in a BEC reduces to the motion of a condensate over a stationary thermal gas.

hydrodynamic conditions not well satisfied.

Temperatures ~ 100 nK Average distance ~ 1 µm de Broglie wavelength ~ 5 µm

1 µm

Temperatures ~ 100 nK Average distance ~ 1 µm de Broglie wavelength ~ 5 µm

1 μm

Temperatures ~ 100 nK Average distance ~ 1 μm de Broglie wavelength ~ 5 μm

1 µm

Temperatures ~ 100 nK Average distance ~ 1 µm de Broglie wavelength ~ 5 µm

Resonantly-interacting Fermi gases

Equation of State

Ku et al., Science 335, pg 563-567 (2012) (MIT) Nascimbène et al., Nature 463, 1057–1060 (2010) (ENS) Horikoshi et al., Science 327, 442–445 (2010) (Tokyo) Kinast et al., Science 307, 1296–1299 (2005) (Duke) Coupling between temperature and density variations in second sound for a resonantly interacting Fermi gas

- ⁶Li atoms, 50/50 spin mixture
- B = 834 G
- •150000 atoms per spin state
- $T = 0.135(10) T_F^{trap}$

Second sound excitation

Sidorenkov et al., Nature 498, 78 (2013)

'1D' Landau two-fluid model

Strongly-interacting Fermi gas in an elongated trap

Assumptions: 1. Thermal equilibrium along transverse direction, 2. flow fields independent of radial position.

Making use of local density approximation, Landau's two-fluid hydrodynamic equations become:

$$\begin{aligned} \partial_t s_1 + \partial_z (s_1 v_n^z) &= 0 \\ m \partial_t n_1 + \partial_z j_z &= 0 \\ m \partial_t v_s^z &= -\partial_z (\mu_1(z) + V_{ext}(z)) \\ \partial_t j_z &= -\partial_z P_1 - n_1 \partial_z V_{ext}(z) \end{aligned}$$
1D thermodynamic quantities
$$X_1 &= \int_0^\infty X 2\pi r dr$$

Bertaina, Pitaevskii & Stringari, Phys. Rev. Lett. 105, 150402 (2010).

Higher order collective oscillations

Higher order collective oscillations

S´anchez Guajardo et al., PRA 87, 063601 (2013)

Higher order collective oscillations

Advantages of trap inhomogeneity

Temperature dependence for free!

Normalized speeds of the first and second sound

Normalized speeds of the first and second sound

Superfluid fraction in the UNIFORM system

Conclusions

S´anchez Guajardo et al., PRA 87, 063601 (2013) Yan-hua Hou et al., Phys. Rev. A 88, 043630 (2014) M.K. Tey et al., PRL 110, 055303 (2013) Sidorenkov et al., Nature 498, 78 (2013)

Thank you for your attention.