Boosting the critical temperature in Co-doped Ba122: a spectroscopic view.

Erik van Heumen

van der Waals - Zeeman institute Universiteit van Amsterdam

Collaborators

Poster: contains all details of the data analysis

Unconventional SC & local Fermi liquids

Optical spectroscopy of Iron pnictide SC's

Is the normal state of iron pnictides Fermi liquid like?

Unconventional superconductors

- Do similar looking phase diagrams suggest a common origin?
- Understanding the non-SC state holds the key.

Optical spectroscopy

Intraband optical response of charge carriers

$$\hat{\sigma}(\omega) = \frac{i\omega_p^2}{4\pi} \frac{1}{\omega + \hat{M}(\omega, T)}$$

Drude Model

$$\hat{M}(\omega,T) = i\Gamma_D$$

'local' Fermi Liquid

$$\hat{M}(\omega, T) = M_1(\omega, T) + iM_2(\omega, T)$$

 $M_2(\omega, T) = C \left[(\hbar \omega)^2 + (p\pi k_B T)^2 \right]$

Götze, W. & Wölfle, P, Phys. Rev. B **6**, 1226–1238 (1972). Maslov, D. L. & Chubukov, A. V, Phys. Rev. B **86**, 155137 (2012). Berthod, C. et al. Phys. Rev. B 87, 115109 (2013).

Experimental observations of local Fermi liquids -

Material	р	Reference
Organic conductors	2.38	Dressel, J. Phys. Condens. Mat. 23, 293201 (2011).
Sr ₂ RuO ₄	2	Stricker, D. et al. Phys. Rev. Lett. 113 , 087404 (2014).
HgBa ₂ CuO _{4+δ}	1.5	Mirzaei, S. I. et al. Proc. Natl. Acad. Sci. 110 , 5774 (2013).
$Pb_{0.5}Bi_{1.55}Sr_{1.2}La_{0.8}CuO_{6+\delta}$	1.5	Mirzaei, S. I. et al. Proc. Natl. Acad. Sci. 110 , 5774 (2013).
ortho-II YBa ₂ Cu ₃ O _{6.5}	1.5	Mirzaei, S. I. et al. Proc. Natl. Acad. Sci. 110 , 5774 (2013).
Ce _{0.95} Ca _{0.05} TiO _{3.04}	1.31	Katsufuji, T. & Tokura, Y. Phys. Rev. B 60 , 7673–7676 (1999).
Nd _{0.905} TiO ₃	1.03	Yang, J. et al., Phys. Rev. B 73 , 195125 (2006)
URu ₂ Si ₂	1	Nagel, U. et al., Proc. Natl. Acad. Sci. 109 , 19161 (2012).
Pnictides	?	

Annealing iron pnictides

- Annealing increases T_{c.}
- Reduces residual scattering.
- Spectroscopic data is lacking
- 1 crystal: cut in 2 pieces
- 1 piece annealed

Gofryk, K. et al., Phys. Rev. B 83, 064513 (2011).

Unconventional SC & local Fermi liquids

Optical spectroscopy of Iron pnictide SC's

Is the normal state of iron pnictides Fermi liquid like?

Optical conductivity

Intraband conductivity subtly changed

Extended Drude Model

$$\hat{\sigma}(\omega) = \frac{i\omega_p^2}{4\pi} \frac{1}{\omega + \hat{M}(\omega)}$$
$$M_1(\omega, T) = \omega \left(\frac{\omega_p^2}{4\pi} Im \left[\frac{1}{\omega \hat{\sigma}(\omega, T)}\right] - 1\right) \quad M_2(\omega, T) = \frac{\omega_p^2}{4\pi} Re \left[\frac{1}{\hat{\sigma}(\omega, T)}\right]$$

Important: this assumes *no* interband transitions.
 Can this be applied to pnictides?

not without taking interband processes into account

EvH et al., Europhysics Letters 90, 37005 (2010). Benfatto, L. et al., Phys. Rev. B **83**, 224514 (2011). Marsik, P. et al, Phys. Rev. B 88, 180508 (2013).

Extended Drude analysis

Two methods:

Calculate M(ω), correct for non-zero interband contribution to σ . (i.e. $\varepsilon_{\infty} \approx 100$) For details: see poster

Subtract $\sigma_{inter}(\omega)$, calculate M(ω).

Memory function

Lower scattering rate for annealed sample.

Different frequency/temperature dependence ?

Frequency dependence Fit M₂(ω) with power-law function (10 – 50 meV): $M_2(\omega) = \frac{1}{\tau}(0) + B\omega^{\eta}$

Power law fit results $M_2(\omega) = \frac{1}{2}(0) + B\omega^{\eta}$ $1/\tau(0)$ has different T dependence for T < 120 K Frequency power \approx 2 between 0 – 120 K for annealed sample Temperature power \approx 2 between 0 – 120 K for annealed sample

- Optical spectroscopy of Iron pnictide SC's
 - Is the normal state of iron pnictides Fermi liquid like?

Summary

$M_2(\omega,T)$ is a function of ω^2 and T^2 after annealing. $M_2(\omega,T) \propto \left[(\hbar\omega)^2 + (1.5\pi k_B T)^2\right]$

The normal state of iron pnictides is Fermi liquid like.

Thanks for your attention