

Many-body Anderson localization of strongly interacting Bose-Einstein condensates

Mott Lobes, Superfluidity and Bose Glass

Johann Kroha

Physikalisches Institut Universität Bonn

Roman Katzer Cord Müller University of Bonn University of Konstanz

Exotic Superconductors and Superfluids 2014, ICTP Trieste, 27 October 2014

<u>م</u> universitätbonn

BEC with disorder W and interaction U

niversität**bonn**

BEC with disorder W and interaction U

<u>م</u> universitätbonn

BEC with disorder W and interaction U

and

Describing

in a unified theory.

<u>م</u> universität**bonn**

$$H = \sum_{i} \left(\varepsilon_{i} - \mu + \frac{U}{2} (\mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - 1) \right) \mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - t \sum_{\langle ij \rangle} \mathbf{b}_{i}^{\dagger} \mathbf{b}_{j}$$

$$\psi_{i} = \langle 0 | \mathbf{b}_{i} | 0 \rangle$$

$$\psi_{i} = \langle 0 | \mathbf{b}_{i} | 0 \rangle$$

$$H = \sum_{i} \left[\left(\varepsilon_{i} - \mu + \frac{U}{2} (\mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - 1) \right) \mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - t \sum_{j.nn.i} (\psi_{j}^{*} \mathbf{b}_{i} + \psi_{j} \mathbf{b}_{i}^{\dagger} - \psi_{j}^{*} \psi_{i}) \right] - t \sum_{\langle ij \rangle} \delta_{i}^{\dagger} \delta_{j}$$

Diagonalizing local Hamiltonian exactly in Fock space:

 $E_{i\alpha}$ many-body eigenenergy $\Psi_i = \Psi(\varepsilon, \mu, t/U)$

$$H = \sum_{i} \left(\varepsilon_{i} - \mu + \frac{U}{2} (\mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - 1) \right) \mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - t \sum_{\langle ij \rangle} \mathbf{b}_{i}^{\dagger} \mathbf{b}_{j}$$

$$\psi_{i} = \langle 0 | \mathbf{b}_{i} | 0 \rangle$$

$$\psi_{i} = \langle 0 | \mathbf{b}_{i} | 0 \rangle$$

$$H = \sum_{i} \left[\left(\varepsilon_{i} - \mu + \frac{U}{2} (\mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - 1) \right) \mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - t \sum_{j.nn.i} (\psi_{j}^{*} \mathbf{b}_{i} + \psi_{j} \mathbf{b}_{i}^{\dagger} - \psi_{j}^{*} \psi_{i}) \right] - t \sum_{\langle ij \rangle} \delta_{i}^{\dagger} \delta_{j}$$

Disorder: random ε_i

Fisher et al, PRB 40, 546 (1989) Bisbort, Hofstetter, EPL 86, 50007 (2009)

Diagonalizing local Hamiltonian exactly in Fock space:

 $E_{i\alpha}$ many-body eigenenergy $\Psi_i = \Psi(\varepsilon_i, \mu, t/U, \Psi_j)$

universität**bonn**

The spectra result from a combination of

- Iocal charging energy:
- discreteness of particle number n_{α}

$$E_{\alpha}^{(0)} = (\varepsilon_i - \mu)n_{\alpha} + \frac{U}{2}(n_{\alpha} - 1)n_{\alpha}$$

universitätbonn

The spectra result from a combination of

- Iocal charging energy:
- discreteness of particle number n_{α}

$$E_{\alpha}^{(0)} = (\varepsilon_i - \mu)n_{\alpha} + \frac{U}{2}(n_{\alpha} - 1)n_{\alpha}$$

$$H = \sum_{i} \left[\left(\varepsilon_{i} - \mu + \frac{U}{2} (\mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - 1) \right) \mathbf{b}_{i}^{\dagger} \mathbf{b}_{i} - t \sum_{j.nn.i} (\psi_{j}^{*} \mathbf{b}_{i} + \psi_{j} \mathbf{b}_{i}^{\dagger} - \psi_{j}^{*} \psi_{i}) \right] - t \sum_{\langle ij \rangle} \delta_{i}^{\dagger} \delta_{j}$$

no transport in the local many-body ground states: $\delta_{i} = b_{i} - \Psi_{i} \rightarrow \left(\langle 0_{i} | \delta_{i} | 0_{i} \rangle = 0 \right)$

→ Hopping transport of local many-body excitations

Propagators for local Fock space eigenstates:

$$G_{jj}^{R}(\omega) = -i\langle \mathbf{b}_{j}\mathbf{b}_{j}^{\dagger}\rangle = \sum_{\alpha} \left[\frac{\psi_{j\,0\alpha} \ \psi_{j\,\alpha0}^{*}}{\omega - (E_{j\alpha} - E_{j0}) + i\eta} - \frac{\psi_{j\,0\alpha}^{*} \ \psi_{j\,\alpha0}}{\omega + (E_{j\alpha} - E_{j0}) + i\eta} \right]$$
$$F_{jj}^{R}(\omega) = -i\langle \mathbf{b}_{j}\mathbf{b}_{j}\rangle = \sum_{\alpha} \left[\frac{\psi_{j\,0\alpha} \ \psi_{j\,\alpha0}}{\omega - (E_{j\alpha} - E_{j0}) + i\eta} - \frac{\psi_{j\,0\alpha} \ \psi_{j\,\alpha0}}{\omega + (E_{j\alpha} - E_{j0}) + i\eta} \right]$$

→ For strong interaction, U >> t, W: confinement to one Fock band |ia> Wick's theorem preserved!

Effective single-particle Hamiltonian

for hopping of local, many-body excitations:

$$H = \sum_{i} \overline{B_{i\alpha}}^{+} (E_{i\alpha} - E_{i0}) \underline{\tau} \overline{B_{i\alpha}}^{-} - \sum_{\langle ij \rangle; \alpha, \beta \neq 0} \overline{B_{i\alpha}}^{+} \underline{T_{ij\alpha\beta}} B_{i\beta}$$

$$\overline{B_{i\alpha}} = \begin{pmatrix} B_{i\alpha} \\ B_{i\alpha}^+ \end{pmatrix}$$

Anomalous, renormalized hopping amplitudes:

$$\underline{\underline{T}_{ij\alpha\beta}} = \begin{pmatrix} T_{ij\alpha\beta} & S_{ij\alpha\beta} \\ S_{ij\alpha\beta}^* & T_{ij\alpha\beta}^* \end{pmatrix}$$

$$T_{ij\alpha\beta} = t \psi_{i\alpha0} \psi_{j0\beta}$$

$$S_{ij\alpha\beta} = t \psi_{i\alpha 0} \psi_{j0\beta}$$

$$\psi_{i\,lpha 0} = \langle i\,lpha | \mathbf{b}_i | i\,0
angle$$

 $\psi^*_{i\,lpha 0} = \langle i\,0 | \mathbf{b}^{\dagger}_i | i\,lpha
angle$

Criterion for AL of BEC: vanishing of total superfluid transport

The superfluid current is carried by all ω < 0 (hole-like) many-body excitations:

 $J_{ij} = 2\frac{t}{\hbar} \operatorname{Re} \int \frac{\mathrm{d}\omega}{2\pi} b(\omega) \left[G_{ij}^{A}(\omega) - G_{ij}^{R}(\omega) \right] \qquad b(\omega) = \theta(-\omega) \qquad \text{analogous to} \\ \text{SC junctions!}$

SF current is driven by a phase difference between distant sites i and j:

$$J_{ij} = 2\frac{t}{\hbar} \sin(\phi_j - \phi_i) \operatorname{Im} \int \frac{\mathrm{d}\omega}{2\pi} b(\omega) \left[G_{ij}^{(n)A}(\omega) - G_{ij}^{(n)R}(\omega) \right]$$

AL of BECs amounts to the AL of **all** hole-like many-body excitations!

Analysis with the selfconsistent AL theory Vollhardt, Wölfle (1980)

- For strong interaction: U >> t, W: Mapping of full many-body problem onto Transport theory of hopping many-body excitations
- Simultaneous description of
 Mott phase and Anderson localization (q.interference)
 Stochastic dynamical mean-field theory for the avg local OP local many-body spectrum in Fock space
- The phase diagram
 - respects the theorem of inclusions
 - reflects the features of the local many-body excitation spectrum