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Anderson localization of 
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Experiment:  Aspect, inguscio  
                                             (2008) 

Theory: 
Gross-Pitaevskii  + disorder 
interference         dephasing 
Basko, Aleiner, Altshuler, Flach… 
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Mott-Hubbard BEC insulator 
Bloch (2002) 

Anderson vs Mott localization of BECs 
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Theory:  Mott + disorder 
„Bose glass“:                  and   
Fisher et al., PRB 40, 546 (1989), Giamarchi 
Bisport, Hofstetter, EPL 86, 50007 (2009) 
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Anderson localization of 
weakly interacting 
BEC wave function 

in a random potential 

 
Experiment:  Aspect, inguscio 

Speckle, quasiperiodic pot. 
Theory: 
Gross-Pitaevskii  + disorder 
interference         dephasing 
Basko, Aleiner, Altshuler, Flach… 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 Puddles of Anderson-localized, 

Strongly interacting BECs 
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                                    in a unified theory. 

Strong, local  
Interaction 

 
``Mottness´´ 
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Anderson vs Mott localization of BECs 

Nonlocal  
quantum interference 

 
BEC Anderson localization 



Diagonalizing 
local Hamiltonian  
exactly in Fock space: 
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iE many-body eigenenergy 

Bose-Hubbard:  stochastic condensate DMFT 



Diagonalizing 
local Hamiltonian  
exactly in Fock space: 

),/,,( jii Ut  

iE many-body eigenenergy 

Disorder:          random  i

Bose-Hubbard:  stochastic condensate DMFT 

Fisher et al, PRB 40, 546 (1989) 
Bisbort, Hofstetter, EPL 86, 50007 (2009) 



avoided crossings 
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Local many-body bands: 
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The spectra result from a combination of 
  local charging energy: 
  discreteness of particle number  n

Bose-Hubbard:  stochastic condensate DMFT 

no disorder:              W/U = 0.0 



avoided crossings 

adding disorder:       W/U = 0.6 
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Local many-body bands: 
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The spectra result from a combination of 
  local charging energy: 
  discreteness of particle number  n

Bose-Hubbard:  stochastic condensate DMFT 



Transport theory  and  Anderson localization 

no transport in the local many-body ground states:                          
 

   Hopping transport of local many-body excitations    

iii b  00||0 iii 

   For strong interaction,  U >> t, W:   
                          confinement to one Fock band |ia> 
       Wick‘s theorem preserved! 

Propagators for local Fock space eigenstates: 



Transport theory  and  Anderson localization 

Effective single-particle Hamiltonian  
           for hopping of local, many-body excitations:  
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Anomalous, renormalized hopping amplitudes:    



Criterion for AL of BEC:   vanishing of total superfluid transport 

Transport theory  and  Anderson localization 

The superfluid current is carried by all  w < 0  (hole-like) many-body excitations: 

analogous to  
SC junctions! 

)()( ww b

SF current is driven by a phase difference between distant sites i and j: 

AL of BECs amounts to the 

AL of all hole-like many-body excitations! 

Analysis with the selfconsistent AL theory 
Vollhardt, Wölfle (1980) 
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  The theorem of inclusions 
     is respected: 
     no direct transition 
     Mott           superfluid 
     Polet, Prokof‘ef, Troyer,  
     PRL 103, 104402 (2009) 

 
  The phase boundary  
     reflects the charging  
     spectrum of the on-site 
     many-body excitations 

Bose glass phase diagram 



Transport theory of Bose glass and superfluidity 

Phase diagram                       disorder:   W/U = 0.8 
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     many-body excitations 

Bose glass phase diagram 



  For  strong interaction:    U >> t, W: 
      Mapping of full many-body problem onto 
      Transport theory of hopping many-body excitations 
 

  Simultaneous description of  
      Mott phase    and   Anderson localization (q.interference) 
      Stochastic dynamical mean-field theory for the avg local OP 
      local many-body spectrum in Fock space 
     

   The phase diagram  
      - respects the theorem of inclusions 
      - reflects the features of the local many-body excitation spectrum 
 
 

Conclusion 


