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◆ superfluid transition
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Correlated disorder in homogeneous 2D:

Correlated disorder in 2D traps:

◆ experiment
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Dirty Boson Problem (2 Dimensions)

Competition between interaction (g) and disorder (V)

●
●
● ●
●●●

Suprafluid islands, 
percolation ?

Normal state 
at T=0 (Bose glass) ?

«Insulator» state 
at T>0 ?

Experimental realizations:
◆ suprafluid transition of 4Helium in vycor,

◆ superconductor-insulator transition in high Tc

✖ trapped ultracold atoms with artificial disorder (2D)

Kosterlitz-Thouless 
transition at T>0 ?



2D Correlated Disorder potential: 
Speckle
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The conductivities of two-dimensional conductor-insulator networks generated photolitho-

graphically from laser speckle patterns have been measured. Isotropic networks with =450000

statistically independent units show a percolation threshold f, =41'/o conductor and a critical ex-

ponent t =1.30. Measurements on anisotropic networks and numerical simulations indicate

that either f„t, or the size of the "asymptotic region" must vary with the degree of anisotropy.

I. INTRODUCTION II. EKPERIMENTAL TECHNIQUE

Recently, Lobb, Skocpol, and Tinkham' and Tink-

ham2 have reported electrical-resistivity measure-

ments on a system consisting of superconducting
niobium filaments imbedded in a copper matrix, and

have interpreted their results in terms of percolation
theory. Briefly, they obtained a critical exponent

s =1.05, which is different from the value

0.5 ( s.& 0.9 (Ref. 3) thought to apply to three-

dimensional superconductor-resistor systems. They

speculate that this discrepancy might be due to the

highly anisotropic nature of their system.
Effects in the percolation problem due to this type

of anisotropy have also been previously considered

theoretically. ~~ It was the goal of the experiments
reported here to examine the effects of systematically
introducing anisotropy into a model percolating sys-

tem, in order to obtain a somewhat firmer basis for

further theoretical consideration.

To this end, we have invented a system which con-

sists of metal films patterned photolithographically

from laser speckle patterns, whose anisotropy is easily

varied and controlled. The films are relatively simple

to fabricate and contain a large number of statistically
independent regions. Moreover, the statistical prop-

erties of the speckle -patterns which define their

geometry have been extensively studied' and can be

systematically varied.

We find that the effects of introducing anisotropy

are nontrivial'and fairly dramatic, in that the

behavior of the conductance as a function of percent
metal appears qualitatively changed. Far from the

percolation threshold, these effects can be under-

stood, at least qualitatively, by fairly straightforward

arguments. The behavior of the conductance in the

more interesting region near the percolation thres-

hold is somewhat inconclusive, although it does pro-

vide constraints on the possible alternatives, and

should serve as a guide to aid in the development of
the theory.
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FIG. 1. Schematic of the optical system used to create the

speckle patterns. The y direction is out of the plane of the

figure.

In our experiment, a cw argon-ion laser forms an

approximately elliptical and Gaussian spot on a diffuse

scatterer (see Fig. 1). A speckle pattern, temporally

constant but varying spatially in a pseudorandom

fashion, is formed by the scattered light. Its auto-

correlation function is related to the shape of the
spot; in this case, it is approximately Gaussian with

characteristic widths I„»= lI.I./a„~,where h. is the

wavelength of the light (514.5 nm), L is the distance
from the spot to the observation plane (= 1 m), and

a„~are the widths of the spot (= 1 cm).
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This pattern exposes extremely high contrast,

fine-grained 35-mm film (Kodalith). After develop-

ment the film contains a pattern of clear and opaque

regions whose relative area fractions can be varied by

adjusting the laser intensity and the exposure time

[see Fig. 2(a)]. This pattern is then photolithographi-

cally reproduced as a 100-A-thick NiCr film on a

standard 1 & 3-in. ' glass slide, using standard contact

printing, vacuum evaporation, and lift-off techniques

[Figs. 2(b)—2(d)]. An enlarged section of an isotropic

film is shown in Fig. 3.
The anisotpopic speckle patterns are statistically

identical to an isotropic pattern modified only by a

change of the length scales. Except for relatively

minor imperfections, such as edge roughness, intro-

duced by the photolithographic processing, this

should apply as well to the metal film. The degree of

anisotropy is characterized by the aspect ratio

n =—I„/1»,where x is the direction of overall current

flow. o. is determined experimentally from the ratio

a~/a„of the axes of the spot on the scatterer. Direct

measurements on the films always give a value for o,

which is closer to unity; we attribute this to the finite

resolution of the 35-mm film. The smaller of lay,
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FIG. 3. (a) Photograph of a small section from an isotro-

pic sample: n =1,f=0.419. The black areas are metal. (b)

Sample geometry. The cross-hatched regions are the thick

aluminum or NiCr contacts.
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which ranged between 30 and 40 p,m, is determined

as half the mean distance between metal-glass boun-

daries along the appropriate direction on a sample

with f=50%, and may be interpreted to be the

length of a "statistical unit"-in that direction. Figure

4 shows an enlarged section from an anisotropic sam-

ple.
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FIG. 2. (a) Response of the high-contrast film to the in-

cident light. (b) Contact printing configuration. The cross-

hatched regions of the photoresist (Shipley 1350B) dissolve

away during development. (c) Deposition of the metal film

by vacuum evaporation. (d) The remaining photoresist is

removed by dissolving in acetone, leaving behind a metal

film in those regions where the speckle pattern intensity

was below the threshold I'.

FIG. 4. Photograph of a section from an anisotropic sam-

ple: a=S, f=0.407. The black areas are metal. Note that

the magnification is less than that of Fig. 3.

Smith, Lobb, Phys. Rev. B 20, 3653 (1979).

Classical Percolation transition:

experiment: percolation threshold 
at area fraction ≈0.41  (V/μ≈1.9)

scattered light from diffuse scatterers

Intensity I(x,y) pseudo-random

V (x, y) ∝ I(x, y)

V (x, y) = V

V (x, y)V (0, 0) = V 2f(x, y) Gaussian correlations with correlation lengths σx, σy



Two-dimensional Ultracold Bosons in a harmonic trap:

gω ω: trap frequency
g: interaction constant
N: number of Bosons

x

y

N≈40 000 Bosons 
with short-ranged (hard-core) 3D interaction in anisotropic trap  

g ~(log na2)-1 for hard disks of diameter a

 ideal Bosons (g=0): Bose-Einstein transition at T 0
c

 interacting Bosons (g>0): Kosterlitz-Thouless-Berenzinski transition at TKT < T 0
c

 How does disorder modify the transition ? 

quasi2D: ωz>>ωx≈ωy

speckle potential 
 correlation length σ

amplitude V

(Experiments ↔ theory: Path-Integral Monte-Carlo simulations)



Clean Bosons: Coherence properties (Experiment+QMC)

N/Nc = (T/Tc)-2

Characterization of 
Coherence (Peak around k=0):

Width of the peak: 
HWHM

Height of the peak:

Fraction of particles in k=0 peak: 
N0/N 

Kosterlitz-Thouless transition: NKT

mean field

QMC

T. Plisson, B. Allard, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel, Phys. Rev. A 84, 061606(R) (2011)

Time-of-Flight ⇒ momentum distribution

g = 0.096, ωx ≈ ωy/2, ωz/ωx = 100



Coherence properties:  
Where is Kosterlitz-Thouless in trap?

Infinite (homogeneous) system: 

nk ∼ k−[2−η(T )] for k → 0
with 1/4 ≤ η(T ) ≤ 2

KT transition at η=1/4

⇒ plot 

Low T-phase with algebraic order:

High T-phase normal:

s(k) = nkk2−1/4

nk ∼ 1

s(k) for finite trapped system
(QMC simulation):
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Trapped (finite,inhomogeneous) system: 



Experiment: Influence of disorder

B. Allard, T. Plisson, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel, Phys. Rev. A 85, 033602 (2012)
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 adiabatic ramping of correlated disorder potential (speckle) 

supression of peak density N0 observed

V=0
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σx/2 = σy ≈ λT =
√

2π/mT



Dirty Bosons: QMC study 
(homogeneous)

G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia, Phys. Rev. Lett. 111,  037203 (2013)

N≈105 Bosons in 2D Box with periodic boundary conditions

Grand-canonical simulation (worm-algo)

L

L
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g

interaction strength 
g=0.1

2D speckle disorder:

amplitude VR

isotropic correlation length σR

chemical potential μ

σR =
√

5
2mµ(averaged over ≈40 disorder configurations)

Similar study in 3D: 
S. Pilati, S. Giorgini, M. Modugno, N. Prokof’ev, New J. Phys. 12, 073003 (2010)
S. Pilati, S. Giorgini, N. Prokof’ev, Phys. Rev. Lett. 102, 150402 (2009)



Dirty Bosons: Suprafluid transition

Number of condensed particles N0 at fixed disorder amplitude VR
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N0 = O(1)

N0 ∼ L7/4

at TKT

superfluid  phase:

N0 ∼ L2−η(T )

Suprafluid transition remains in Kosterlitz-Thouless universality class
up to high disorder amplitude 

(Harris criterium: small amplitude)



Phase diagram as a function of temperature T and  disorder amplitude VR

Dirty Bosons in two dimensions:
Phase diagram
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QMC in trap: Momentum distribution nk

Peak density of (normalized) 
momentum distribution nk=0

N=38 000, g=0.096, quasi2D,  single disorder configuration
∫

dknk = 1
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Trap, finite system, disorder:
Where is the Kosterlitz-Thouless?

⇒ plot s(k) = nkk2−1/4
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QMC: Phase Diagram in Trap
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QMC Densities

Gross-Pitaevskii

V=0.88 t=0.46

QMC: cycles >200

QMC: cycles > 4000
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E = 1
T×σ2 T σ

T
σ (ω)

σNT
DC = β2

π Λα,α(β/2)
σNT
DC = 0.06

σMEM
DC = 10−4 ÷ 8 × 10−2

Transport : Conductance from QMC (homogenous)

〈Jα(q, τ)Jα(−q, 0)〉 ≡ 1
Z

Tr
[
e−(β−τ)HJα(q)e−τHJα(−q)

]current-correlations
in imaginary time:

conductance G(0) from 
inverse Laplace transform:

lim
q→0

〈Jα(q, τ)Jα(−q, 0)〉 = 2
∫ ∞

−∞
dω

ω exp(−τω)
1 − exp(−βω)

G(ω)

direct computations of 
current-correlations:

large errors!

improved QMC estimator:
large reduction of variance!

G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia, Phys. Rev. Lett. 111,  037203 (2013)



Dirty Bosons:
transport properties
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at T>0

GDC ∼ e−∆/T

Many-Body «delocalization» at T>0:
Perturbation theory around non-interacting localized phase diverges for 

continuum systems + correlated disorder   
R. Nandkishore, cond-mat 1408.6235 (2014).



Summary-Outlook

Disorder: Kosterlitz-Thouless vs Bose glass 

✓ Kosterlitz-Thouless transition for disorder 
strength V smaller than chem. pot. μ

✓ Cross-over from normal phase to Bose glass at 
T=0 and strong disorder

⋴    Possibility of many-body (de-)localization at T>0? 

⋴    full phase-diagram: interaction g, correlation length σ ?


