Superfluid and Transport Properties of Disordered Bose Gases in Two Dimensions

Markus Holzmann

LPTMC, CNRS, Universite Pierre et Marie Curie, Paris

LPMMC, CNRS, Université Joseph Fourier, Grenoble, France

2D Correlated Disorder potential: Speckle

scattered light from diffuse scatterers

 $V(x,y) \propto I(x,y)$

Intensity I(x,y) pseudo-random

 $\overline{V(x,y)} = V$

$$\overline{V(x,y)V(0,0)} = V^2 f(x,y)$$

Gaussian correlations with correlation lengths σ_x, σ_y

Classical Percolation transition:

experiment: percolation threshold at area fraction ≈ 0.41 (V/µ ≈ 1.9)

Smith, Lobb, Phys. Rev. B 20, 3653 (1979).

Two-dimensional Ultracold Bosons in a harmonic trap:

(Experiments \leftrightarrow theory: Path-Integral Monte-Carlo simulations)

 $N \approx 40~000$ Bosons with short-ranged (hard-core) 3D interaction in anisotropic trap

ω: trap frequencyg: interaction constantN: number of Bosons

quasi2D: $\omega_z > \omega_x \approx \omega_y$

g ~ $(\log na^2)^{-1}$ for hard disks of diameter a

ideal Bosons (g=0): Bose-Einstein transition at T_c^0

Interacting Bosons (g>0): Kosterlitz-Thouless-Berenzinski transition at $T_{KT} < T_c^0$

How does disorder modify the transition ?

speckle potential

correlation length σ amplitude V

Clean Bosons: Coherence properties (Experiment+QMC)

T. Plisson, B. Allard, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel, Phys. Rev. A 84, 061606(R) (2011) $g = 0.096, \quad \omega_x \approx \omega_y/2, \quad \omega_z/\omega_x = 100$ Time-of-Flight \Rightarrow momentum distribution Kosterlitz-Thouless transition: N_{KT} Characterization of _(a)|4.0 1.0Coherence (Peak around k=0): HWHM [norm.] 0.8 3.0 m mean field 2.0 HMAH 0.6 Width of the peak: **HWHM** 0.4 0.2 0.0 0.0 (b) 1.2 N_0/N [%] QMC Height of the peak: 0.8 Fraction of particles in k=0 peak: 0.4

0.0

1.4

2

N/Nc

1.6

1.8

 $N/N_c = (T/T_c)^{-2}$

 N_0/N

Coherence properties:
Where is Kosterlitz-Thouless in trap?Infinite (homogeneous) system:Low T-phase with algebraic order: $n_k \sim k^{-[2-\eta(T)]}$ for $k \to 0$ With $1/4 \le \eta(T) \le 2$ High T-phase normal: $n_k \sim 1$ KT transition at $\eta=1/4$

Trapped (finite, inhomogeneous) system:

$$\Rightarrow$$
 plot $s(k) = n_k k^{2-1/4}$

s(k) for finite trapped system (QMC simulation):

Experiment: Influence of disorder

B. Allard, T. Plisson, M. H., G. Salomon, A. Aspect, P. Bouyer, and T. Bourdel, Phys. Rev. A 85, 033602 (2012)

adiabatic ramping of correlated disorder potential (speckle)

 $\sigma_x/2 = \sigma_y \approx \lambda_T = \sqrt{2\pi/mT}$

Dirty Bosons: QMC study (homogeneous)

G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia, Phys. Rev. Lett. 111, 037203 (2013)

Grand-canonical simulation (worm-algo)

 $N \approx 10^5$ Bosons in 2D Box with periodic boundary conditions

Similar study in 3D: S. Pilati, S. Giorgini, N. Prokof'ev, Phys. Rev. Lett. 102, 150402 (2009)

S. Pilati, S. Giorgini, M. Modugno, N. Prokof'ev, New J. Phys. 12, 073003 (2010)

Dirty Bosons: Suprafluid transition

Number of condensed particles N_0 at fixed disorder amplitude V_R

Suprafluid transition remains in Kosterlitz-Thouless universality class up to high disorder amplitude (Harris criterium: small amplitude)

Dirty Bosons in two dimensions: Phase diagram

Phase diagram as a function of temperature T and disorder amplitude V_R $2m\sigma^2\mu$ =5 fixed

QMC in trap: Momentum distribution nk

N=38 000, g=0.096, quasi2D, single disorder configuration

Peak density of (normalized) momentum distribution $n_{k=0}$

$$\int d\mathbf{k} \, n_k = 1$$

N=38 000, g=0.096, quasi2D, single disorder configuration, anisotropic speckle

Transport : Conductance from QMC (homogenous)

G. Carleo, G. Boéris, M. Holzmann, and L. Sanchez-Palencia, Phys. Rev. Lett. 111, 037203 (2013)

current-correlations in imaginary time:

direct computations of current-correlations: large errors!

improved QMC estimator: large reduction of variance!

$$J_{\alpha}(\mathbf{q},\tau)J_{\alpha}(-\mathbf{q},0)\rangle \equiv \frac{1}{Z} \operatorname{Tr}\left[e^{-(\beta-\tau)H}J_{\alpha}(\mathbf{q})e^{-\tau H}J_{\alpha}(-\mathbf{q})\right]$$

$$\lim_{q \to 0} \langle J_{\alpha}(\mathbf{q}, \tau) J_{\alpha}(-\mathbf{q}, 0) \rangle = 2 \int_{-\infty}^{\infty} d\omega \frac{\omega \exp(-\tau \omega)}{1 - \exp(-\beta \omega)} G(\omega)$$

Figure 1: Current-current correlations deep in the disordered phase

continuum systems + correlated disorder

R. Nandkishore, cond-mat 1408.6235 (2014).

Summary-Outlook

