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Bose-Fermi mixtures with a tunable BF attraction 

•  System of bosons of one species interacting with one-component fermions through a 
tunable boson-fermion attraction.  
 
•  For weak attraction, weakly interacting Bose-Fermi mixture: at sufficiently low 
temperature bosons condense, while fermions fill a Fermi sphere. 
 
•  For strong attraction bosons pair with fermions to form molecules. Condensation 
suppressed in favour of molecule formation. Fermi sphere of molecules coexisting with 
Fermi sphere of unpaired fermions for               . 
 

? ? € 

nF ≥ nB

•  How does the system evolves from one limit to the other one?  
 
•  How to describe this evolution? 2 



•  We focus on systems where               . 

The model 

•  Two-component Hamiltonian with attractive contact interaction between bosons 
and fermions.  

•  Bare contact-interaction  strength between bosons and fermions expressed in terms of 
the boson-fermion scattering length        . 

€ 

nF ≥ nB
3 

•   No Fermi-Fermi interaction  (fermions are identical: short-range interaction 
suppressed). Short-range boson-boson interaction is instead possible (and desired if 
repulsive).  Add boson-boson short-range repulsion: 



T=0 phase diagram concentration vs coupling obtained with FN-DMC   

First order quantum phase transition between condensed phase and ‘normal’  phase, with 
a narrow phase separation region, which shrinks to zero for           .  
Polaron-molecule transition point is recovered and unveiled in this limit. 

G. Bertaina, E. Fratini, S. Giorgini, P. Pieri, PRL, 110, 115303  (2013) 

Condensate fraction for x=nB/nF=0.175.  

kFaBB =1; mB =mF
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x = nB / nFBoson concentration:  

Dimensionless coupling strength:               , (kFaBF )
−1

where:                         . 

ΨSF = JBBJBFΦF
Slater (NF )

ΨN = JBBΦM
Slater (NM = NB,NF − NB )

Trial wavefunctions: 

Molecular orbitals:  

x→ 0



Many-body diagrammatic approach 
         for the condensed phase 
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Bosonic and fermionic self-energy diagrams for the condensed phase 

Boson self-energy 

Fermion self-energy 

Boson-fermion T-matrix 

6 



Coupled equations for chemical potentials and condensate density n0 

momentum distributions  obtained from the Green’s functions:  

 Green’s functions obtained from the self-energies through Dyson’s equations: 
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integration over k + Hugenholtz-Pines relation         coupled eqs for                 :  µB, µF,n0
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Results: chemical potentials and energy 
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1st ord!

2nd ord! 2nd ord!

1st ord!

ü  2nd order pert. results recovered for 
weak coupling [Albus et al.; Viverit 
& Giorgini (2002)]: 

ü  molecular binding for strong 
coupling 

ü  Good agreement with QMC results for the 
energy also in the nonperturbative region.  

 
TMA: present work 
QMC: G. Bertaina et al. PRL (2013). 

X = 0.175 !

nBaBB
3 = 3×10−3



Condensate fraction: universal behavior and comparison with QMC 

Condensate fraction independent of the boson concentration for most of the graph. 
Some dependence  only in the transition region, when the condensate fraction 
approaches zero.   Overall good agreement with FN-DQMC results. 
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Curves: present work. 
Symbols: FN-DMC G. Bertaina et al. 
PRL (2013) at x=0.175 + new 
simulations at x=0.5 and 1. 
Dashed-dotted line: Bogoliubov. 

nBaBB
3 = 3×10−3
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Condensate fraction: connection with the polaron quasiparticle weight 

nB / nF → 0 :  polaron problem

§   What is the analogous of the condensate fraction for the polaron?  

§  To which quantity does the condensate fraction of a Bose-Fermi mixture tend in 
the polaron limit?  

Zpol = npol (k = 0).

 Consider the quasiparticle weight Z at the Fermi level for the minority component of a 
Fermi-Fermi mixture. This weight yields  the size of the Fermi step: 
 
For                   one has              and                       , then yieding: 
 
But                          since its integral over k scales like         (1 particle over the volume    ). 
 
We have then                  , in the thermodymamic limit. Thus:  
 
But for a a Bose-Fermi mixture                   is the limit for                     of the condensate 
fraction:  
 
 
The condensate fraction tends to the quasiparticle weight Z in the polaron limit. 

Z = n↓ (kF↓
− )− n↓ (kF↓

+ ).

n↓ (k)→ npol (k)kF↓ → 0 Z = npol (k = 0)− npol (0
+ ).n↓ / n↑ → 0

npol (k ≠ 0)∝1/V

npol (0
+ )→ 0

1/V V

npol (k = 0) nB / nF → 0
n0
nB

=
nB (k = 0)

NB

=
npol (k = 0)

1
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The ‘universality’ of the condensate fraction with respect to the boson concentration 
makes even the curve at concentration equal one to be ‘ruled’ by the polaron 
quasiparticle weight for most of its graph.  
 

Condensate fraction: comparison with diag-MC for the polaron 

Curves: our calculations at three different 
concentrations for zero Bose repulsion. 
 
Symbols: Diagrammatic MC results 
 for          [J. Vlietinck, J. Ryckebusch & 
 K. Van Houcke,  PRB 87, 115133 (2013)] 

Zpol



Momentum distribution functions 

Universality of the bosonic momentum 
distribution. Very good agreement with 
 FN-DQMC results (new calculations 
by G.Bertaina). Universality implies: 
 
 
                      
as if the polarons were independent.  
      

Good agreement with QMC data also 
for            For fermions, however, QMC is   
more affected by finite-size effects  
[Holzmann et al. PRL, 107, 110402 (2011)] 
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 Results for the normal phase:  
 indirect Pauli exclusion effect 

A. Guidini, G. Bertaina, E. Fratini, P. Pieri, PRA, 89, 023634  (2014) 



Momentum distribution function at T=0: bosons  

nB (q) ≈
2π

mr
2aBF

dP
(2π )3∫ Θ(PCF −P)Θ(|q−P |−kUF )

[q2 / (2mB )+ (q−P)
2 / (2mF )−P

2 / (2M )+ε0 ]
2

Strong-coupling asymptotic expression for the momentum  distribution function: 

Effect of Pauli exclusion on bosonic atoms. States with                      are forbidden. 
Depleted region when                  . Analogous of the Sarma phase in a BF mixture. 

€ 

q < kUF − PCF
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X = 0.175 !

mF =mB; (kFaBF )
−1 = 3

TMA: previous digrammatic theory 
for           . 
FN-DMC: Calculation using 
molecular trial wave function. 

n0 = 0

nB < nF / 2



Mixture Group 
7Li-6Li ENS(Paris), Rice 

23Na-6Li MIT  

87Rb-40K LENS,JILA,Hamburg 

87Rb-6Li Tübingen 

85Rb-6Li UBC (Vancouver) 

174Yb-173Yb Kyoto 

84Sr-87Sr Innsbruck 

41K-6Li MIT 

41K-40K MIT 

174Yb-6Li Kyoto, UW (Seattle) 

23Na-40K MIT 

Experiments? 

Several examples of quantum degenerate Bose-Fermi  mixtures have been attained so  
far with ultracold atoms:  

Tunability of the Bose-Fermi interaction via  
Fano-Feshbach resonance achieved in several  
mixtures. Weak Bose-Bose repulsion. 
F-F interaction negligible.  
 
 Feshbach molecules created  at JILA and  
Hamburg with a Rb-K mixture, and at MIT with  
Na-K (Zwierlein) and Na-Li (Ketterle). 
 
 But  no exp. result so far in the interrmediate 
 coupling region. Difficulties associated with 
 three-atom recombination processes.  
 
 Loss-rate proportional to          . Working at low  
bosonic concentrations may reduce losses. 
 
 

€ 

nB
2nF
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•  Presented many-body diagrammatic theory for Bose-Fermi mixtures at  T=0   which  
interpolates smoothly  from weak to strong Bose-Fermi attractions. 

•  Perturbative results recovered in weak coupling,  good agreement with FN-DMC 
calculations even in the nonperturbative regime                .           

•   “Universal” behavior found for the bosonic momentum distribution functions and  
 condensate fraction: no dependence on the boson concentration from vanishing 
boson concentration up to concentration                    . 
 
•   Unexpected (?) connection between condensate fraction in a  Bose-Fermi mixture  and                 
the polaron quasiparticle weight .   
 
•  Interesting “indirect Pauli exclusion effect”  in the molecular regime. 
 

Summary and conclusions 

nB / nF =1.0
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kFaBF >1


