BCS regime of the two-dimensional fermionic Hubbard model: ground-state phase diagram

Nikolay Prokof'ev¹, Youjin Deng^{2,1}, Evgeny Kozik³, and Boris Svistunov^{1,2}

¹Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

²Hefei National Lab. for Physical Sciences at Microscale and Dept. of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

³Department of Physics, King's College London, Strand, London WC2R 2LS, UK
prokofev@physics.umass.edu

A significant part of the phase diagram of the two-dimensional fermionic Hubbard model—at least for moderate interactions and fillings (U < 4, n < 0.7)—is controlled by Fermi liquid physics with the microscopic interaction renormalized into weak BCS-type effective coupling. We access this regime in a controlled way by a combination of bold-line diagrammatic Monte Carlo with a peculiar ladder-diagram summation trick and semi-analytic treatment of the weak instability in the Cooper channel. We obtain the corresponding ground-state phase diagram in the (n, U) plane, describing the competition between the p- and d-wave superfluid states. We also claim the values of the dimensionless BCS coupling constants—controlling the superfluid T_c —at the phase boundaries, which prove to be very small up to U = 4, n = 0.6.

[1] Youjin Deng, Evgeny Kozik, Nikolay Prokof'ev, and Boris Svistunov, arXiv:1408.2088.