Excitonic Condensation of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský

DFG FOR1346

Minimal lattice model with spin-state transition

Two-band Hubbard model at $\mathrm{n}=2$ (half filling)

$$
\begin{aligned}
H_{\mathrm{t}}= & \frac{\Delta}{2} \sum_{i, \sigma}\left(n_{i \sigma}^{a}-n_{i \sigma}^{b}\right)+\sum_{i, j, \sigma}\left(t_{a} a_{i \sigma}^{\dagger} a_{j \sigma}+t_{b} b_{i \sigma}^{\dagger} b_{j \sigma}\right) \\
& +\sum_{\langle i j\rangle, \sigma}\left(V_{1} a_{i \sigma}^{\dagger} b_{j \sigma}+V_{2} b_{i \sigma}^{\dagger} a_{j \sigma}+c . c .\right) \\
H_{\mathrm{int}}^{\mathrm{dd}}= & U \sum_{i}\left(n_{i \uparrow}^{a} n_{i \downarrow}^{a}+n_{i \uparrow}^{b} n_{i \downarrow}^{b}\right)+(U-2 J) \sum_{i, \sigma} n_{i \sigma}^{a} n_{i-\sigma}^{b} \\
& +(U-3 J) \sum_{i \sigma} n_{i \sigma}^{a} n_{i \sigma}^{b} \\
H_{\mathrm{int}}^{\prime} & =J \sum_{i \sigma} a_{i \sigma}^{\dagger} b_{i-\sigma}^{\dagger} a_{i-\sigma} b_{i \sigma}+J^{\prime} \sum_{i}\left(a_{i \uparrow}^{\dagger} a_{i \downarrow}^{\dagger} b_{i \downarrow} b_{i \uparrow}+c . c .\right) .
\end{aligned}
$$

low spin high spin

$$
\mathrm{S}=1
$$

(11)
(11)

Excitonic instability - DMFT linear response

$$
\begin{aligned}
& U=4, J=1 \\
& t_{a}{ }^{2}+t_{b}{ }^{2}=\text { const } \\
& \Delta=3.40+\delta \\
& V=0 \\
& \zeta=\frac{2 t_{a} t_{b}}{t_{a}^{2}+t_{b}^{2}}
\end{aligned}
$$

JK and Augustinsky, 2014

Excitonic condensate - oder parameter

Order parameter is a complex vector: $\quad \phi^{\gamma}=\sum_{\alpha \beta} \sigma_{\alpha \beta}^{\gamma}\left\langle a_{\alpha}^{\dagger} b_{\beta}\right\rangle$
z-axis parallel to: $\quad i(\bar{\phi} \wedge \phi)$

No cross hopping ($\mathrm{V}=0$) $->$ overall phase of ϕ does not matter $->$ phases are distinguished by $\left|\phi^{+}\right|$and $\left|\phi^{-}\right|$

3 possible phases:
linear (L)

$$
\left|\phi^{+}\right|=\left|\phi^{-}\right| \neq 0
$$

circular (C)

$$
\left|\phi^{+}\right|=0,\left|\phi^{-}\right| \neq 0
$$

elliptic (E)

$$
0 \neq\left|\phi^{+}\right| \neq\left|\phi^{-}\right| \neq 0
$$

Excitonic condensation (undoped) - L phase

Spectral density (diagonal elements)

Excitonic condensation (undoped) - L phase

order parameter $\left|\phi^{+}\right|=\left|\phi^{-}\right|$

Uniform spin susceptibility

Optical conductivity (dc resistivity)

Excitonic condensation (doping) - all phases

- L phase
- E phase
n_{h} - hole concentration ($\mathrm{N}=2-\mathrm{n}_{\mathrm{h}}$)
- C phase

Excitonic condensation (doping) - all phases

n -T phase diagram

Ferromagnetic magnetization

Orbital degeneracy - d ${ }^{6}$ perovskites

LDA+U (static mean-field) solutions with excitonic order for hypothetical cubic structure of LaCoO_{3}
LaCoO_{3} AF-EC order

$$
\begin{array}{ll}
\left(\begin{array}{ccc}
0 & 0 & X \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \tilde{D}_{4 h} \times U(1) \\
\left(\begin{array}{ccc}
0 & 0 & X \\
0 & 0 & X \\
0 & 0 & X
\end{array}\right) & \tilde{D}_{3 d} \times U(1)
\end{array}
$$

$$
\left(\begin{array}{lll}
X & 0 & 0 \tag{h}\\
0 & X & 0 \\
0 & 0 & X
\end{array}\right)
$$

Conclusions

- Solids close to spin-state transition may be unstable towards condensation of spinful excitons.
- The excitonic order parameter has complex structure and allows multiple phases.
- The excitonic order may lead to a long-range order of magnetic multipoles or local spin currents, but can also induce ferromagnetic polarisation.

Phys. Rev. B 89, 115134 (2014)
arXiv:1405.1191
arXiv:1410.5198

Excitonic insulator

A band insulator with a very narrow gap (positive or negative) is unstable towards opening of a gap due to electron-hole attraction - condensation of excitons.

The gap can have spin-singlet or spin-triplet symmetry and be real or imaginary. Which of these options is realised depends on the interaction term and details of the band structure.

Mott, 1961
Halperin and Rice, 1968

Strong coupling picture of excitonic condensation

Strong coupling: HS states behave as hard-core bosons with the vacuum state $|\mathrm{vac}\rangle \equiv|\mathrm{LS}\rangle$

$$
H_{\text {eff }}=\sum_{i, s} \mu n_{i, s}+J_{\perp} \sum_{i, j, s} d_{i, s}^{\dagger} d_{j, s}+J_{\|} \sum_{\left\langle i j, s, s^{\prime}\right.} n_{i, s} n_{j, s}+J_{0} \sum_{\langle i j\rangle} S_{i}^{z} S_{j}^{z} \quad \begin{array}{ll}
d_{1}^{\eta}= & a_{\dagger}^{\dagger} b_{\downarrow} \\
d_{-1}^{\dagger}=a_{\downarrow}^{\dagger} b_{\dagger}
\end{array}
$$

Bose-Einstein condensation $=$ spontanous hybridization between HS and LS states on the same site (breaks spin rotational symmetry)

Excitonic condensation (undoped) - L phase

order parameter $\left|\phi^{+}\right|=\left|\phi^{-}\right|$
Spectral density (diagonal elements)

Excitonic condensation (doping) - all phases

n -T phase diagram

Ferromagnetic magnetization
$\left\langle m_{z}\right\rangle \quad$ II $i(\bar{\phi} \wedge \phi)$

EC in cubic d ${ }^{6}$ perovskite

Exciton $=$ bound pair of e_{g} electron and $\mathrm{t}_{2 \mathrm{~g}}$ hole
How do we detect the EC order?
Local d-occupation matrix (10×10):

$$
\begin{aligned}
& \text { spin structure: } \quad \mathrm{D}=\left(\begin{array}{cc}
\mathbf{D}_{0}+\phi^{z} & \phi^{x}+i \phi^{y} \\
\left(\phi^{x}+i \phi^{y}\right)^{*} & \mathbf{D}_{0}-\phi^{z}
\end{array}\right) \\
& \text { orbital structure: } \\
& \quad \phi_{x y}^{\alpha} d_{x^{2}-y^{2}} \otimes d_{x y}+\phi_{z x}^{\alpha} d_{z^{2}-x^{2}} \otimes d_{z x}+\phi_{y z}^{\alpha} d_{y^{2}-z^{2}} \otimes d_{y z}
\end{aligned}
$$

The order parameter has 9 components (or 18 real components) ϕ_{β}^{α} $\alpha=\mathrm{x}, \mathrm{y}, \mathrm{z}$ transforms like a vector under spin rotations $\beta=x, \hat{y}, \mathrm{z}$ transforms like a pseudovector under O_{h} operations

The spin and orbital symmetry does not specify the ordered phase uniquely, possible solutions can be classified by their residual symmetry.

Examples of LDA+U EC solutions

$\mathrm{LaCoO}_{3} \mathrm{AF}$-EC order
ϕ_{β}^{α}

(b)

$\left(\begin{array}{lll}0 & 0 & X \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{lll}0 & 0 & X \\ 0 & 0 & X \\ 0 & 0 & X\end{array}\right)$

$i \quad X$	$E_{(i)}[\mathrm{meV} / \mathrm{f} . \mathrm{u}$.
10.182	-43
20.134	-73
30.144	-82

Examnles of EC solutions

Examples of LDA+U for PCCO

orthorhombic structure: 4 Co atoms per f.u. two inequivalent Co positions
Product solution:

	1	2	3	4
$\phi_{y z}$	0.182	0.182	0.216	0.216
$\phi_{z x}$	0.228	0.228	-0.212	-0.212
$\phi_{x y}$	-0.071	0.071	-0.093	0.093

Orbital pseudovectors on sym. related Co atoms:

Origin of exchange splitting on Pr

Coupling of $\operatorname{Pr} 4 f^{1}$ spin to p-d orbitals: effective multi-channel Kondo Hamiltonian

$$
H^{(n)}=\sum_{\alpha \alpha^{\prime}} \sum_{m m^{\prime}} \sum_{i} \mathbf{S} \cdot \boldsymbol{\sigma}_{\alpha \alpha^{\prime}} J_{i, m m^{\prime}}^{(n)} c_{i m \alpha}^{\dagger} c_{i m^{\prime} \alpha^{\prime}}+\text { c.c. }
$$

Below T_{c} effective exchange field appears: $\quad h_{\gamma}^{(n)}=\sum_{i m m^{\prime}} J_{i, m m^{\prime}}^{(n)} \sum_{\alpha \alpha^{\prime}} 2 \operatorname{Re}\left\langle c_{i m \alpha^{\prime}}^{\dagger} \sigma_{\alpha \alpha^{\prime}}^{\gamma} c_{i m^{\prime} \alpha^{\prime}}\right\rangle$

The site symmetry of the EC order parameter with respect to the Pr site decides whether contributions of from different Co site interfere constructively or destructively.

For the present EC solution $\mathrm{h}=0$ in the absence of spin-orbit coupling in $\operatorname{Pr} 4 f$ shell. With SOC splitting on 10 meV scale is obtained.

