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Using linear response theory with the dynamical mean-field approximation we investigate the
particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition.
Besides the previously reported high-spin–low-spin order we find an instability towards triplet ex-
citonic condensate. We discuss the strong and weak coupling limits of the model, in particular, a
connection to the spinful hard-core bosons with a nearest-neighbor interaction. Possible realization
in LaCoO3 at intermediate temperatures is briefly discussed.

PACS numbers: 71.35.Lk,71.27.+a,05.30.Jp,75.45+j

I. INTRODUCTION

Search for new states of matter is one of the central
topics of condensed matter physics. While the develop-
ment of cold atom techniques allowed the construction of
many exotic phases in particular in systems of interact-
ing bosons, electronic order parameters other than spin,
charge and orbital densities or s-wave pairing supercon-
ductivity are rather rare in real materials. We report ob-
servation of an off-diagonal order close to the spin-state
transition in the two-band Hubbard model with Hund’s
coupling and show that such electronic system provides
realization of some of the phases observed with interact-
ing bosons.

The role of Hund’s coupling in correlated electron sys-
tems has been recently theoretically studied in the con-
text of Hund’s metals1,2 and the spin-state transitions
driven by pressure3,4 as well as temperature5,6 or dop-
ing7. Competition of different spin states was also linked
to the peculiar magnetic properties of iron pnictides8.
The two-band Hubbard model at half filling provides a
minimal lattice realization of the spin-state transition
in correlated electron systems9,10. Recently, a reentrant
transition of Ising type to a two-sublattice order of high-
spin (HS) and low-spin (LS) states was reported on a
bipartite lattice in the vicinity of the spin-state tran-
sition11. It was proposed that such ordered state can
explain properties of the notorious spin-state transition
compound LaCoO3 at intermediate temperatures.

In this article, we report a systematic investigation
of the particle-hole instabilities in the normal phase of
the two-band Hubbard model. Besides the previously
reported Ising instability we find that an excitonic in-
stability which breaks a continuous symmetry dominates
over a broad range of parameters. The idea of an insta-
bility due to the long-range part of the Coulomb interac-
tion in small gap semiconductors leading to so the called
excitonic insulator phase appeared fifty years ago12 and
more recently was applied to the physics of LaB6

13. Fol-
lowing the work of Batista14 on electronic ferroelectric-
ity, the excitonic instability was studied in the extended
Falicov-Kimball model15–17 as well as the two-band Hub-
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FIG. 1: (color online) Left: the conceptual phase diagram of
the two-band Hubbard model for U = 4J . The shaded area
marks the parameter range visited while varying the band
asymmetry ζ and crystal field ∆. Right: 1P spectral den-
sities obtained at the points marked by stars (upper panel
corresponds to the upper star) at temperatures just above
the leading Tc.

bard model without Hund’s coupling18,19.

The connection to the bosonic physics arises in the
strong-coupling limit. As was shown by Batista14, the
extended Falicov-Kimball model at half filling maps onto
spinless hard-core bosons with nn repulsion, a problem
much studied in the context of solid, superfluid and
possibly a supersolid phase20,21. We show that in the
strong-coupling limit of the two-band Hubbard model
with Hund’s coupling the mapping generalizes to the
spinful hard-core bosons with some additional nn terms,
a much less studied problem 22,23 with a rich phase dia-
gram.

The paper is structured as follows. In Section II
we state the problem and describe the computational
method. In Section III we summarize our numerical re-
sults. In Section IV we derive the strong- and weak-
coupling limits of the studied model in order to elucidate
the nature of the instabilities reported in Section III. We
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FIG. 2: (color online) The typical q-dependence of the lead-
ing eigenvalues of the susceptibility matrix: spin longitudinal
(red), OD (green) and OO (blue) in a system with a large
band asymmetry ζ = 0.22, ∆ = 3.40 at temperatures 773 K,
644 K and 580 K (left to right).

briefly discuss the classical limit, which provides the sim-
ple understanding of the HS-LS phase, and then focus on
various aspects of the excitonic phase. In Section V we
summarize our main findings.

II. COMPUTATIONAL PROCEDURE

We consider the two-band Hubbard mode with nearest-
neighbor (nn) hopping on a bipartite (square) lattice with
the kinetic Ht and the interaction Hint = Hdd

int + H ′
int

terms given by

Ht =
∆

2

∑

i,σ

(

na
iσ − nb

iσ

)

+
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iσbjσ
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+
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†
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)
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∑
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∑
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∑

iσ

a†
iσb†i−σai−σbiσ + J ′

∑

i

(

a†
i↑a

†
i↓bi↓bi↑ + c.c.

)

.

(1)

Here a†
iσ , b†iσ are the creation operators of fermions with

spin σ =↑, ↓ and nc
iσ = c†iσciσ. Symbol

∑

i,j implies
summation over ordered nn pairs, while

∑

⟨ij⟩ implies
summation over nn bonds (pairs without order). The
model is studied at half filling, two electrons per site on
average. The crystal field ∆ and the Hund’s exchange
J are chosen so that the system is in the vicinity of the
LS-HS transition.

The numerical calculations were performed in the dy-
namical mean-field approximation24,25 with the density-
density interaction Hdd

int only. The effect of adding H ′
int
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FIG. 3: (color online) Left: Leading eigenvalues for equal
bandwidths (ζ = 1) and ∆ = 3.40 eV at 1160 K. The blue
OO mode diverges faster than the green OD mode. Right:
Splitting of the OO mode from (b) due to added cross-hopping
V1,2 = 0.1 eV . The leading mode (two-fold degenerate) has
the form a†

σb−σ + b†σa−σ with σ =↑, ↓.

is considered in Section IV. We use the hybridization
expansion continuous time quantum Monte Carlo (CT-
HYB)26,27 to solve the auxiliary impurity problem and
obtain the local one-particle (1P) and two-particle (2P)
propagators. For selected parameters we have bench-
marked the CT-HYB results against those obtained with
the Hirsch-Fye implementation of the present proce-
dure11.

In order to study phase transitions, we search numer-
ically for divergent static particle-hole susceptibilities in
the disordered high temperature phase. The lattice sus-
ceptibility χαβ,γδ(T,q) is a q-dependent matrix function
indexed by pairs of spin-orbital indices. It is calculated
from the Bethe-Salpeter equation as a function of the full
1P propagator and the 2P-irreducible vertex. The cru-
cial DMFT simplification consists in the fact that the 2P
irreducible vertex is k-independent and equals the impu-
rity 2P irreducible vertex24. Therefore the momentum
dependence of χ(T,q) comes entirely from the 1P prop-
agator.

We calculate χ(T,q) on dense q-mesh in the Brillouin
zone, diagonalize for every q, and identify the largest
eigenvalues with the corresponding eigenvectors. The
transition temperature is obtained from the zero cross-
ing χ−1

λ (Tc) = 0 of the inverse of the largest eigenvalue
χ−1

λ (T,q) = 0. The advantage of this approach is that
no prior assumptions about the symmetry of the ordered
phase is needed.

III. NUMERICAL RESULTS

Following Ref. 11, we set U=4, J=1 and use eV as
energy units to allow for a straightforward comparison.
The basic phase diagram of model (1) at half filling was
computed by Werner and Millis9 and its cartoon version
is presented in Fig. 1. We are interested in a small region
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FIG. 4: (color online) (a) Representative dependencies of the
instability temperatures on the crystal field ∆: TOD (squares)
for ζ = 0.28 and TOO (circles) for ζ = 0.55. The open
square marks the position of the reentrant transition taken
from Ref. 11. The blue line marks the estimated position of
∆c. (b) The T -dependence of the inverse eigenvalues χ−1

OO

(circles) and χ−1

OD
(squares) of the susceptibility at selected

values of ∆. The parameters ζ = 0.28, ∆ = 3.44 eV (blue)
correspond to ∆ >∼∆c where the OD instability already disap-
peared. For ζ = 0.55, ∆ = 3.38 eV (black) the OD instability
exists only in a finite interval of temperatures. In both cases
the OO is the leading instability, which is physically realized.

close to the boundary between HS Mott insulator and
LS band insulator, which fixes the ∆ of interest to 3J
approximately. Our main variable parameter will be the
asymmetry between a and b derived band characterized
by ζ = 2tatb

t2
a
+t2

b

. For reason that becomes apparent in the

discussion of the strong coupling limit, we choose to vary
ζ while keeping the sum t2a + t2b fixed. Consequently, the
point representing our system moves slightly, covering
the red region of Fig. 1 when going between symmetric
bands, ζ = 1, and the flat-band limit, ζ = 0.

First, we discuss the eigenmodes of χ(q) for ta =
0.45 eV, tb = 0.05 eV (ζ = 0.22), V1,2 = 0, and
∆ = 3.40 eV, the parameters of Ref. 11. The full 16× 16
matrix of χ(q) can be, in a standard way using the spin-
conservation law, block-diagonalized to ↑↑ − ↓↓, ↑↑ + ↓↓,
↑↓ and ↓↑ blocks (channels), each having 4 × 4 orbital
structure. We find three distinct branches of χλ(q) with
sizable magnitude. These correspond to i) the spin lon-
gitudinal mode

∑

σ σ(na
σ + nb

σ) in the ↑↑ − ↓↓ channel,
ii) the orbital diagonal (OD) mode

∑

σ(na
σ − nb

σ) in the
↑↑ + ↓↓ channel, and iii) four degenerate orbital off-
diagonal (OO) modes a†

↑b↓, b†↑a↓, a†
↓b↑, b†↓a↑ in the ↑↓

and ↓↑ channels. In Fig. 2, the q dependence of the cor-
responding eigenvalues in the 2D Brillouin zone is plot-
ted for several temperatures. Similar plot for symmetric
bands, ζ = 1, is shown in Fig. 3.

The leading instability for ζ = 0.22 is identified in the
OD mode at (π, π). The corresponding transition tem-
perature agrees well with the onset of the HS-LS checker-
board order found in Ref. 11. Increasing the crystal field
∆ rapidly suppresses the transition temperature TOD,
see Fig. 4a, and the OD instability eventually disappears
above some ∆c. For ∆ <∼∆c the OD instability disap-
pears at low temperatures as shown in Fig. 4b, leading
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FIG. 5: (color online) Instability of the normal phase as a
function of band asymmetry ζ for various CF parameters ∆.
Open circles denote the divergence TOO of the OO mode, filled
squares mark the divergence TOD of the OD mode. The lines
are guides to the eye. The dashed vertical lines mark the ζ’s
for which the ∆ dependences of TOO and TOD are shown in
Fig. 4a.

to a reentrant transition. For ∆ >∼∆c, the proximity of
the ordered phase at an intermediate temperature gives
rise to a peak in the susceptibility, Fig. 4b. These results
provide the same picture as the calculations of Ref. 11
performed in the ordered HS-LS phase. However, in ad-
dition to that, one can see that the OO susceptibility also
exhibits a substantial increase at (π, π) with decreasing
temperature.

Next, we vary the band asymmetry ζ while keeping
the cross-hopping V1,2 = 0. For more symmetric bands a
different result is obtained, as shown in Fig. 3, where the
dominant χλ(q) are plotted for ζ = 1. In this case, the
OO mode at (π, π) is the leading instability. This implies
formation of an ordered state with spontaneous local off-
diagonal hybridization characterized by non-zero value of
⟨a†

i,σbi,−σ⟩ and anti-ferro periodicity.
In Fig. 5, we show the calculated instability lines in the

ζ-T plane for several values of ∆. The actual calculations
were performed for tb ≤ ta, but the results hold also for
tb ≤ ta, since on a bipartite lattice at half-filling the lat-
ter can be mapped on the former by exchange of a and b
followed by the particle-hole transformation and the sign
reversal of a and b operators on one sublattice. Several
observations can be made. For the studied parameters
there are two possible instabilities corresponding to the
OO and OD modes. The OO mode, favored by more
symmetric bands, is the leading instability over a broad
range of band asymmetries. The OO instability is sup-
pressed when one of the bands becomes narrow, in which
case the instability line TOO(ζ) extrapolates linearly to
zero. The OD mode is the leading instability only for
strongly asymmetric bands. For constant t2a + t2b , the
TOD(ζ) is insensitive to ζ within the accuracy of our cal-
culation. For all ζ, the TOO is less sensitive to the crystal

normal phase

excitonic condensate

HS-LS order 

3

3.4 3.5 3.6 3.7
∆ (eV)

0

200

400

600

800

Te
m

pe
ra

tu
re

 (K
)

OO
OD

(a)

∆c

400 600 800
Temperature (K)

-0.1

0

0.1

0.2

χ-1
 (a

rb
. u

ni
ts)

(b)

FIG. 4: (color online) (a) Representative dependencies of the
instability temperatures on the crystal field ∆: TOD (squares)
for ζ = 0.28 and TOO (circles) for ζ = 0.55. The open
square marks the position of the reentrant transition taken
from Ref. 11. The blue line marks the estimated position of
∆c. (b) The T -dependence of the inverse eigenvalues χ−1

OO

(circles) and χ−1

OD
(squares) of the susceptibility at selected

values of ∆. The parameters ζ = 0.28, ∆ = 3.44 eV (blue)
correspond to ∆ >∼∆c where the OD instability already disap-
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exists only in a finite interval of temperatures. In both cases
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the ordered phase at an intermediate temperature gives
rise to a peak in the susceptibility, Fig. 4b. These results
provide the same picture as the calculations of Ref. 11
performed in the ordered HS-LS phase. However, in ad-
dition to that, one can see that the OO susceptibility also
exhibits a substantial increase at (π, π) with decreasing
temperature.
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the cross-hopping V1,2 = 0. For more symmetric bands a
different result is obtained, as shown in Fig. 3, where the
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FIG. 3: Left, the evolution of the one-particle spectral function corresponding to a and b orbitals with tem-

perature between 1160 K (bottom) and 290 K (top). Right, the optical conductivity in the same temperature

range. In the normal phase (red) the height of the Drude peak increases with decreasing temperature. Low-

ering the temperature below Tc (blue) leads to suppression of the Drude peak and transfer of the spectral

weight to higher energy. The inset shows the evolution of the dc resistivity.

captures the features (i)-(iii) observed in PCCO.

Next, we address the Pr3+ →Pr4+ valence transition and the fact that experimental transition

is observed in a doped system. An isostructural valence transition points to a near degeneracy

of the two charge states of the Pr 4f shell, which therefore acts as a charge reservoir keeping the

CoO3 subsystem at a fixed chemical potential rather than fixed particle density. Therefore we

have repeated the calculations at fixed chemical potential. In Fig. 2 we show the temperature

dependences of the order parameter |φ| and the particle density n, which reflects the average Pr

valence in the real material. Doping the system away from half filling leads to reduction of Tc.

While n(T ) is almost constant above Tc, below Tc the system draws particles from the reservoir to

approach the half filling in a process controlled by gain in the condensation energy and the energy

cost of adding electrons. This agrees well with the experimental behavior of the Pr valence6. Both

in experiment and in the model the average Pr valence changes rapidly, but continuously around Tc.

While theoretical n(T ) starts growing precisely at Tc its experimental counterpart varies already
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FIG. 2: (a) The order parameter φ = ⟨a†↑b↓ + a†↓b↑⟩ as a function of temperature for stoichiometric filling

n = 2 (black) and at fixed chemical potential corresponding to hole doping between 0.03 and 0.12 (red to

violet) in the normal phase. (b) Number of electrons per atom at fixed chemical potential across Tc (the

same color coding as in (a)). (c) Top, the magnetic susceptibility χ as a function of temperature at the

stoichiometric filling (circles with error bars). The dotted line shows χ(T ) in the normal phase. The stars

correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.

Bottom, the same as above in the system with fixed chemical potential and hole doping of 0.12 in the normal

phase.

1), which leads to opening of a gap in the one-particle spectral density, as shown in Fig. 3. Opening

of a gap naturally affects the optical conductivity shown in Fig. 3. Below Tc, the Drude peak is

rapidly destroyed, as the spectral weight is pushed to higher frequencies, and the dc resistivity

grows exponentially. The spin susceptibility χS(T ), Fig. 2, changes from the Curie-Weiss behavior

above Tc, reflecting the presence of thermally excited HS states, to a T -independent van Vleck

paramagnetism arising from the on-site hybridization between LS and HS states represented by the

off-diagonal self-energy. This effect is quite different from the spin-state transition characterized by

vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation
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correspond to solutions below Tc constrained to the normal phase. The shaded area marks the EC phase.
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1), which leads to opening of a gap in the one-particle spectral density, as shown in Fig. 3. Opening

of a gap naturally affects the optical conductivity shown in Fig. 3. Below Tc, the Drude peak is

rapidly destroyed, as the spectral weight is pushed to higher frequencies, and the dc resistivity

grows exponentially. The spin susceptibility χS(T ), Fig. 2, changes from the Curie-Weiss behavior

above Tc, reflecting the presence of thermally excited HS states, to a T -independent van Vleck

paramagnetism arising from the on-site hybridization between LS and HS states represented by the

off-diagonal self-energy. This effect is quite different from the spin-state transition characterized by

vanishing of the HS population, which can be detected by x-ray absorption. In the EC phase the

HS state remains populated and so the x-ray signature of the spin-state transition is missing. The

sign of the χS jump at Tc depends on details of the system. In Fig. 2 we demonstrate that when Tc

is reduced by doping χS is reduced below Tc. The results so far show that excitonic condensation
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Orbital degeneracy - d6 perovskites

FIG. 4: The rhombohedral unit cell of the cubic structure with spin density depicted as isosurfaces (positive–

red, negative–blue) centered on Co sites. The O atoms are blue and La atoms are grey. Details of the spin

density around the Co site for three solutions are shown on the right. For product solutions (a) and (b) we

use isosurfaces of the collinear spin density. The degenerate solutions can be obtained by Oh operations on

the density distribution or continuous rotations of the spin direction. The non-collinear spin distribution

of non-product solution (c) is depicted as a tangent vector field on a surface where the normal component

vanishes. The transformations to obtain the degenerate solutions are more difficult to visualize, an example

is given in Supplementary Figure 2.

The EC order in a cubic crystal is thus characterized by nine parameters φα
β , where α runs

over the three Cartesian spin components and β over three T1g orbital components. In all stable

solutions that we found the parameters φα
β expressed in the above basis were real numbers. The nine

component order parameter offers several possible inequivalent solutions, which can be classified

by their residual symmetry. All residual symmetries can be obtained by group theoretical methods

developed for superfluid He3 or triplet superconductors19,20. Our goal is not to investigate the

stability of all the possible solutions, but to demonstrate the existence of some. The calculations

were performed in a rhombohedral unit cell, shown in Fig. 4, which admits ferro and G-type anti-
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phases. We want to provide examples of several stable solution with EC order to demonstrate the

feasibility of such state in cobaltites. We start with phases where the orbital and spin parts of the

order parameter factorize, φα
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with the residual symmetry D̃4h × U(1), where the group D̃4h = {C4h,σvC4h × c2} contains the

elements of C4h, which keep the orbital part unchanged, and the element of D4h which change the

sign of the orbital part coupled to π-rotation in the spin space about an axis perpendicular the

U(1) axis. We have constructed several equivalent solutions listed above related by an arbitrary

spin rotation or an Oh rotation the orbital space. We have verified that these solutions yield the

same amplitudes of the order parameter, total energies and the one-particle densities of states. As

a technical side remark we point out that to ensure these symmetry properties with Wien2k the

calculations must be performed in LDA+U and not LSDA+U mode. We have found that feeding

the spin density into the exchange-correlation functional (as done in LSDA+U) enhances the EC

order. However, this type of calculation with the spin-collinear Wien2k code breaks by construction

the spin rotational symmetry.

The second solution we have found for the order parameter
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with the residual symmetry D̃3d×U(1), where the tilde again means that operations which change

the sign of the orbital part are coupled to a π-rotation in the spin space. Calculations starting from

arbitrary orbital always converged to one of these solutions.

Finally, we have found a non-product solution, which has only discrete residual symmetry iso-

morphic to Oh, with the order parameter
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The residual symmetry group contains the Oh element, which transform the orbital part as proper

rotations, coupled to the corresponding spin rotation and the Oh elements, which transform the
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LDA+U (static mean-field) solutions with excitonic order for hypothetical cubic	

structure of LaCoO3



Conclusions

• Solids close to spin-state transition may be unstable towards 
condensation of spinful excitons.	

!

• The excitonic order parameter has complex structure and allows 
multiple phases.	

!
• The excitonic order may lead to a long-range order of magnetic 
multipoles or local spin currents, but can also induce 
ferromagnetic polarisation.	

!
!
Phys. Rev. B 89, 115134 (2014)	

arXiv:1405.1191	

arXiv:1410.5198



Excitonic insulator

A band insulator with a very narrow gap (positive or negative) is unstable towards	

opening of a gap due to electron-hole attraction - condensation of excitons.	

!
The gap can have spin-singlet or spin-triplet symmetry and be real or imaginary.	

Which of these options is realised depends on the interaction term and details of 	

the band structure.	

!
!
!
Mott, 1961 	

Halperin and Rice, 1968



 Strong coupling picture of excitonic condensation
Strong coupling: HS states behave as hard-core bosons with the vacuum state	

⎥vac〉 ≡⎥LS〉	
 	
 	
 	
 	
  

Bose-Einstein condensation = spontanous hybridization between HS and LS	

	
 	
 	
 	
 	
 	
 	
 	
 	
  states on the same site (breaks spin rotational	

	
 	
 	
 	
 	
 	
 	
 	
 	
  symmetry)	


Batista, 2001  	

Balents, 2000
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FIG. 6: Left, the self-energy Σij(ωn) of the half-filled model at T=725 K on the Matsubara contour. The

real and imaginary parts are marked with full and dashed lines, respectively. Right, the corresponding local

Green’s function Gij(τ) at the imaginary times.

V. SUPPLEMENTARY INFORMATION

A. DMFT

In Fig. 6 we show an example of a typical self-energy Σ(iωn) and the local Green’s function

G(τ) in the EC phase. The non-zero diagonal elements correspond to orbital-spin pairs aσ, aσ and

bσ, bσ with σ =↑, ↓. The non-zero off-diagonal correspond to aσ, b− σ and bσ, a− σ.

B. LDA+U results in cubic perovskite structure

The LDA+U calculations were performed in a cubic perovskite structure with La on the A

position and the lattice parameter of 5.4347 Å. We used the Wien2k package with the around

mean-field double counting correction. The ’+U’ orbital potential was added for the Co 3d shell.

In order to include the spin off-diagonal elements of the orbital potential we used the LAPWSO

code, but switched spin-orbit potential on all atoms off.

The EC order parameter can be obtained from the on-site occupation matrix of the Co 3d shell
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EC in cubic d6 perovskite

How do we detect the EC order?	
	
 	
 	
 	
  

Local d-occupation matrix (10 x 10):

Dmm′,ss′ = ⟨c†mscm′s′⟩, where m is the orbital and s the spin index. In general, the symmetry

dictates the EC pairing function to be an irreducible representation of the symmetry group of the

system. The ferromagnetic Hund’s coupling and the band filling restricts possible pairing functions

to spin-triplets and orbital Eg ×T2g = T1g +T2g irreducible representations, out of which the T1g is

favorable for reasons given in the main text and verified by direct computation. The spin structure
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β can have some phase freedom in case that

some orbital flavors are conserved, as is the case when only nearest neighbor hopping is considered.
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β are fixed.

In all presented calculations we found φα
β to be real.

Expressed in the spherical harmonic basis of Wien2k the orbital matrices take the form

φ′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −1
4

(

φ′
zx + iφ′

yz

)

0 1
4

(

φ′
zx − iφ′

yz

)

iφ′
xy

−1
4

(

φ′
zx − iφ′

yz

)

0
√

3
8

(

φ′
zx + iφ′

yz

)

0 −1
4

(

φ′
zx − iφ′

yz

)

0
√

3
8

(

φ′
zx − iφ′

yz

)

0 −
√

3
8

(

φ′
zx + iφ′

yz

)

0

1
4

(

φ′
zx + iφ′

yz

)

0 −
√

3
8

(

φ′
zx − iφ′

yz

)

0 1
4

(

φ′
zx + iφ′

yz

)

−iφ′
xy −1

4

(

φ′
zx + iφ′

yz

)

0 1
4

(

φ′
zx − iφ′

yz

)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

φ′′ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φ′′
xy −1

4

(

iφ′′
zx − φ′′

yz

)

0 1
4

(

iφ′′
zx + φ′′

yz

)

0

1
4

(

iφ′′
zx + φ′′

yz

)

0 −
√

3
8

(

iφ′′
zx − φ′′

yz

)

0 1
4

(

iφ′′
zx + φ′′

yz

)

0
√

3
8

(

iφ′′
zx + φ′′

yz

)

0 −
√

3
8

(

iφ′′
zx − φ′′

yz

)

0

−1
4

(

iφ′′
zx − φ′′

yz

)

0
√

3
8

(

iφ′′
zx + φ′′

yz

)

0 −1
4

(

iφ′′
zx − φ′′

yz

)

0 −1
4

(

iφ′′
zx − φ′′

yz

)

0 1
4

(

iφ′′
zx + φ′′

yz

)

−φ′′
xy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where we have dropped the index α and separate the real and imaginary parts in φ = φ′ + iφ′′.

The ordered phase is characterized by its residual symmetry. A complete list of possible phases

with T1g triplet pairing can be obtained by group theoretical methods in analogy to studies of

He3 or triplet superconductors. It is not our goal to investigate the stability of all the possible
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where we have dropped the index α and separate the real and imaginary parts in φ = φ′ + iφ′′.

The ordered phase is characterized by its residual symmetry. A complete list of possible phases

with T1g triplet pairing can be obtained by group theoretical methods in analogy to studies of

He3 or triplet superconductors. It is not our goal to investigate the stability of all the possible
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The order parameter has 9 components (or 18 real components)

phases. We want to provide examples of several stable solution with EC order to demonstrate the

feasibility of such state in cobaltites. We start with phases where the orbital and spin parts of the

order parameter factorize, φα
β = oβ ⊗ sα. We found two such solutions. The first solution

φ(1) =

⎛

⎜

⎜

⎜

⎝

0 0 X
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⎟

⎟

⎠

. (5)

with the residual symmetry D̃4h × U(1), where the group D̃4h = {C4h,σvC4h × c2} contains the

elements of C4h, which keep the orbital part unchanged, and the element of D4h which change the

sign of the orbital part coupled to π-rotation in the spin space about an axis perpendicular the

U(1) axis. We have constructed several equivalent solutions listed above related by an arbitrary

spin rotation or an Oh rotation the orbital space. We have verified that these solutions yield the

same amplitudes of the order parameter, total energies and the one-particle densities of states. As

a technical side remark we point out that to ensure these symmetry properties with Wien2k the

calculations must be performed in LDA+U and not LSDA+U mode. We have found that feeding

the spin density into the exchange-correlation functional (as done in LSDA+U) enhances the EC

order. However, this type of calculation with the spin-collinear Wien2k code breaks by construction

the spin rotational symmetry.

The second solution we have found for the order parameter

φ(2) =

⎛

⎜

⎜

⎜

⎝

0 0 X

0 0 X

0 0 X

⎞

⎟
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, (6)

with the residual symmetry D̃3d×U(1), where the tilde again means that operations which change

the sign of the orbital part are coupled to a π-rotation in the spin space. Calculations starting from

arbitrary orbital always converged to one of these solutions.

Finally, we have found a non-product solution, which has only discrete residual symmetry iso-

morphic to Oh, with the order parameter

φ(3) =

⎛

⎜

⎜

⎜

⎝

X 0 0

0 X 0

0 0 X

⎞
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. (7)

The residual symmetry group contains the Oh element, which transform the orbital part as proper

rotations, coupled to the corresponding spin rotation and the Oh elements, which transform the
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α = x, y, z  transforms like a vector under spin rotations 	

β = x, ŷ, ẑ transforms like a pseudovector under Oh operations

The spin and orbital symmetry does not specify the ordered phase uniquely,	

possible solutions can be classified by their residual symmetry.



Examples of LDA+U EC solutions

FIG. 4: The rhombohedral unit cell of the cubic structure with spin density depicted as isosurfaces (positive–

red, negative–blue) centered on Co sites. The O atoms are blue and La atoms are grey. Details of the spin

density around the Co site for three solutions are shown on the right. For product solutions (a) and (b) we

use isosurfaces of the collinear spin density. The degenerate solutions can be obtained by Oh operations on

the density distribution or continuous rotations of the spin direction. The non-collinear spin distribution

of non-product solution (c) is depicted as a tangent vector field on a surface where the normal component

vanishes. The transformations to obtain the degenerate solutions are more difficult to visualize, an example

is given in Supplementary Figure 2.

The EC order in a cubic crystal is thus characterized by nine parameters φα
β , where α runs

over the three Cartesian spin components and β over three T1g orbital components. In all stable

solutions that we found the parameters φα
β expressed in the above basis were real numbers. The nine

component order parameter offers several possible inequivalent solutions, which can be classified

by their residual symmetry. All residual symmetries can be obtained by group theoretical methods

developed for superfluid He3 or triplet superconductors19,20. Our goal is not to investigate the

stability of all the possible solutions, but to demonstrate the existence of some. The calculations

were performed in a rhombohedral unit cell, shown in Fig. 4, which admits ferro and G-type anti-
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TABLE II: The amplitudes of the order parameter and the LDA+U total energies relative to the normal

states for several AF EC orders.

i X E(i) [meV/f.u.]

1 0.182 -43

2 0.134 -73

3 0.144 -82

TABLE III: The orbital parts of the EC order parameter for the four Co atoms the unit cell of PCCO. The

spin part is an arbitrary unit vector (the actual calculations were performed with ez). The local coordinates

were chosen such that the corresponding axes on different Co atoms are approximately parallel. The last

line shows the magnetic moment inside the Wien2k atomic spheres.

1 2 3 4

φyz 0.182 0.182 0.216 0.216

φzx 0.228 0.228 -0.212 -0.212

φxy -0.071 0.071 -0.093 0.093

mz [µB] -0.014 0.014 0.023 -0.023

initial conditions we found one stable solution with the order parameter given in table III. The

EC order causes finite spin density distribution in the crystal. Because of the low-symmetry of

the structure this leads to a small moments appearing when integrated over the Wien2k atomic

spheres (shown in Table III). Given their small size we do not assign much significancy to the

actual numbers, which depend the non-physical parameter the sphere radius. More importantly we

observe that the total moment per unit cell is zero up to the computational accuracy.
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Examples of EC solutions

FIG. 4: The rhombohedral unit cell of the cubic structure with spin density depicted as isosurfaces (positive–

red, negative–blue) centered on Co sites. The O atoms are blue and La atoms are grey. Details of the spin

density around the Co site for three solutions are shown on the right. For product solutions (a) and (b) we

use isosurfaces of the collinear spin density. The degenerate solutions can be obtained by Oh operations on

the density distribution or continuous rotations of the spin direction. The non-collinear spin distribution

of non-product solution (c) is depicted as a tangent vector field on a surface where the normal component

vanishes. The transformations to obtain the degenerate solutions are more difficult to visualize, an example

is given in Supplementary Figure 2.
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calculations must be performed in LDA+U and not LSDA+U mode. We have found that feeding
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Examples of LDA+U for PCCO
orthorhombic structure: 4 Co atoms per f.u. two inequivalent Co positions 
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FIG. 5: Left, the collinear spin density around Co atoms in orthorhombic Pr0.5Ca0.5CoO3 with O (blue), Ca

(light blue) and Pr (grey). Middle, the energies of the Pr 4f states with spin-orbit coupling: no EC order

(black), the order parameter transforms according to A′′ representation (red), the order parameter with A′

contribution (green). The inset shows the exchange splitting of the 4f levels when spin-orbit coupling is

not included. Right, a cartoon picture of the orbital pseudo-vectors on the symmetry related Co atoms

transforming according to A′ and A′′ representations.

c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector

10

Product solution: 

TABLE I: The orbital parts of the EC order parameter for the four Co atoms the unit cell of PCCO. The

local coordinate point approximately along the Co-O bonds. The local coordinates on the pairs of symmetry
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c-numbers below Tc we have

H(n) =
∑

αα′

∑

mm′

∑

i

S ·σαα′J (n)
i,mm′c

†
imαcim′α′ + c.c. (1)

where S is Pr spin-12 operator, σ are the Pauli matrices, and cimα is the annihilation operator

of an electron with spin index α in a real orbital |mi⟩ on Co atom i. The coupling constant

J (n)
i,mm′ ∼ ⟨mi|t̂|f (n)⟩⟨f (n)|t̂|m′

i⟩ is proportional to the hopping amplitudes between the orbital |f (n)⟩

of the nth Pr state and the Co orbitals. Although this Hamiltonian is likely to be too simplistic

for quantitative calculation it captures the physical mechanism and the symmetry of the problem.

The spin-triplet order ensures that below Tc the c operators summed over the spin indices acquire

finite expectation value and give rise to an effective exchange field

h(n)γ =
∑

imm′

J (n)
i,mm′

∑

αα′

2Re⟨c†imασ
γ
αα′cim′α′⟩, (2)

where we have used the fact that J (n)
i,mm′ is real in the basis of real orbitals. In order to establish

that h(n)γ is not zero due to destructive interference of coupling to different Co atoms we have to

consider the transformation properties of |f (n)⟩⟨f (n)| and
∑

i |m
′
i⟩⟨c

†
imαcim′α′⟩⟨mi| under the point

group of the Pr site, which contains only identity and σh. The possible symmetries of the latter

are depicted in Fig. 5 using the fact that the T1g order parameter transforms as a pseudo-vector
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Coupling of Pr 4f1 spin to p-d orbitals: effective multi-channel Kondo Hamiltonian

Below Tc effective exchange field appears: 
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The site symmetry of the EC order parameter with	

respect to the Pr site decides  whether contributions	

of from different Co site interfere constructively or	

destructively.	

!
For the present EC solution h=0 in the absence 	

of spin-orbit coupling in Pr 4f shell. With SOC	

splitting on 10 meV scale is obtained. 


