NMR study of the pressure induced Mott transition to SC in the newly discovered Cs₃C₆₀ isomeric compounds

Y. Ihara

TRIANGLE PHYSIQUE

P. Wzietek

T. Mito.

H. Alloul

Laboratoire de Physique des Solides, Université Paris XI, Orsay, France.

D. Pontiroli, M Mazzani, M. Amarini, M. Riccò. CNISM and Dipartimento di Fisica, Universita di Parma

> PRL, **104**,256402 (2010). EPL **94**, 37007 (2011)

V. Brouet, H. Alloul *et al PRL*, **82**,2131 (1999); **86**,4680(2001); *PR* **B**, **66**, 155122, 15123, 15124(2002).

V. Brouet

Phase diagrams of superconducting correlated systems

AF/SC

P (bar)

200

U-SC

600

400

ORSAY

pressure induced IM7

K-(BEDT-TTF)2Cu[N(CN)2]ClTRIANGLEPHYSIQUE

10

0

AF

NMR study of the pressure induced Mott transition to SC in the newly discovered Cs₃C₆₀ isomeric compounds

- Introduction: electronic correlations in A_nC₆₀ Electronic interactions and Jahn Teller distortions Mott Insulator to Metal transition
- Superconductivity of A_3C_{60}
 - **BCS** superconductivity?

Coupling of electrons with molecular phonons

- Magnetic expanded Cs₃C₆₀ phases AF phases for large lattice spacings A15 and fcc phases of Cs₃C₆₀
- Pressure induced SC and Mott transition

Universal features of the phase diagram Correlations and SC near the Mott transition T dependence of the critical pressure

• Summary

PHYSIOUE

M. Knupfer et al, PRL 79, 2714 (1997).

V. Brouet et al PRL 2001, PRB 2002

Insulating non magnetic ground state

Insulating states of A_4C_{60} **and** Na_2C_{60}

- Two electrons on a ball costs an energy U=1eVHund's J_H should favor high spin (S=1)
- Experimental situation
- Non magnetic ground state
- 2 different gaps

So there is an energy gain which opposes to J_H and stabilizes singlets

Strong electronic correlations induce the insulating behaviour

In all $A_n C_{60}$ the coulomb repulsion *U* is large

NMR study of the pressure induced Mott transition to SC in the newly discovered Cs₃C₆₀ isomeric compounds

- Introduction: electronic correlations in A_nC₆₀ Electronic interactions and Jahn Teller distortions Mott Insulator to Metal transition
- Superconductivity of A₃C₆₀ BCS superconductivity?

Coupling of electrons with molecular phonons

- Magnetic expanded Cs₃C₆₀ phases AF phases for large lattice spacings A15 and fcc phases of Cs₃C₆₀
- Pressure induced SC and Mott transition

Universal features of the phase diagram Correlations and SC near the Mott transition T dependence of the critical pressure

• Summary

PHYSIOUE

Superconductivity in A₃C₆₀

The scaling between T_c and the lattice parameter has been assumed to support a phonon BCS-like mechanism

O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997)

TRIANGI F

PHYSIQUE

Superconductivity in Rb₂CsC₆₀

The Hebel Slichter peak is characteristic of BCS SC

NMR study of the pressure induced Mott transition to SC in the newly discovered Cs₃C₆₀ isomeric compounds

- Introduction: electronic correlations in A_nC₆₀ Electronic interactions and Jahn Teller distortions Mott Insulator to Metal transition
- Superconductivity of A_3C_{60}

BCS superconductivity?

Coupling of electrons with molecular phonons

- Magnetic expanded Cs₃C₆₀ phases AF phases for large lattice spacings A15 and fcc phases of Cs₃C₆₀
- Pressure induced SC and Mott transition

Universal features of the phase diagram Correlations and SC near the Mott transition T dependence of the critical pressure

• Summary

PHYSIOUE

Multiple phases in the samples: ¹³³Cs NMR is very helpful

Differences allow selective NMR experiments

H. Alloul, Magnetic Resonance 70, Kazan, 23/06/2014

TRIANGLE PHYSIQUE

47.85

H. Alloul, 28/10/2014, Exotic Superconductors and Superfluids, ICTP Trieste

TRIANGLE PHYSIQUE

H. Alloul, 28/10/2014, Exotic Superconductors and Superfluids, ICTP Trieste

ORSAY

A15 rich

Paramagnetic state SQUID susceptibility data

 $(30.9\% Cs_3C_{60} FCC, 53.6\% Cs_3C_{60} A15, 15.5\% Cs_4C_{60})$

High T Curie-Weiss behavior

Weiss temperature: $\theta \sim 100 K$ Effective moment : $p_{eff} \sim 1.70 \mu_B$

TRIANGLE

PHYSIQUE

 $\chi^{-1} = p_{\rm eff}^2 / 3k_{\rm B}(T + \theta)$

Local moment S ~ 1/2 on the C₆₀ balls?

¹³C NMR

Paramagnetic state NMR shifts ¹³C

Spin dynamics and crystal structure

Crystal structure has no incidence on the SC side

H. Alloul, 28/10/2014, Exotic Superconductors and Superfluids, ICTP Trieste

ORSAY

NMR study of the pressure induced Mott transition to SC in the newly discovered Cs₃C₆₀ isomeric compounds

- Introduction: electronic correlations in A_nC₆₀ Electronic interactions and Jahn Teller distortions Mott Insulator to Metal transition
- Superconductivity of A₃C₆₀

BCS superconductivity?

Coupling of electrons with molecular phonons

- Magnetic expanded Cs₃C₆₀ phases AF phases for large lattice spacings A15 and fcc phases of Cs₃C₆₀
- Pressure induced SC and Mott transition

Universal features of the phase diagram Correlations and SC near the Mott transition T dependence of the critical pressure

• Summary

PHYSIOUE

Mott transitions to the metallic state in the two phases

T (K)

Metallic properties near the Mott transition

Large increase of $(T_1T)^{-1}$ with decreasing p towards p_a

Metallic properties near the Mott transition

Characteristics of the 3D Mott Transition

SC favored in the correlated multiorbital state ?

TRIANGLE

PHYSIQUE

H. Alloul, 28/10/2014, Exotic Superconductors and Superfluids, ICTP Trieste

ORSAY

Mott transition to the metallic state in a clean A15 sample

P. Wzietek, et al, Phys. Rev. Lett. 112, 066401 (2014), arXiv1310.5529

H. Alloul, 28/10/2014, Exotic Superconductors and Superfluids, ICTP Trieste

TRIANGLE PHYSIQUE

No Hebel Slichter peak near the Mott transition

Variation of the physical quantities with pressure near the Mott transition

No pseudogap on χ nor on $1/T_1$

Variation with lattice parameter that is t /U?

Summary

- Fullerides: originalities asociated with their nanostructure. Internal degrees of freedom of the molecule: Phonons, Molecular Jahn-Teller distorsions
- Peculiar correlated electron systems Interplay of Jahn-Teller effects and correlations
- Cs_3C_{60} : IMT toward High T_c superconductivity
 - Multiorbital Mott transition (no excitation to high spin)
 - "Model" 3D MIT (no structural change detected so far)
 - SC is at ease with electron correlations

PHYSIQUE

- Electron correlations strengthen phonon mediated SC??
- DMFT calculations predicted SC dome above Mott
- M. Capone, M. Fabrizio, C. Castellani and E. Tossati RMP 2009
- Ideal system for theoretical understanding of SC near MIT

