First-principles study of the Mott transition and superconductivity in A₃C₆₀

Ryotaro Arita

Yusuke Nomura Shiro Sakai Ryosuke Akashi Kazuma Nakamura Massimo Capone

RIKEN CEMS

Univ. Tokyo RIKEN CEMS Univ. Tokyo Kyushu Inst. Technology SISSA

Phase diagram of A₃C₆₀

SC phase with $T_c \sim 30$ K close to MI phase reproduced by <u>fully non-empirical calculation</u>

C₆₀ superconductors

Cf) Talk by H. Alloul

 $\begin{array}{r} & \mbox{fcc } A_3 C_{60} \\ K_3 C_{60} & : \mbox{Tc=19K} \\ R b_3 C_{60} & : \mbox{Tc=29K} \\ C s_3 C_{60} & : \mbox{Tc=35K} \end{array}$

A15 Cs₃C₆₀ Tc = 38K

Pairing mechanism ?

Pairing mechanism of doped C₆₀

Taken from O. Gunnarsson, RMP 69, 575 (1997)

 $k_{\mathcal{B}}T_{C} = \hbar\omega_{D} \exp(-1/N(E_{F})V)$

 $ω_D \sim 1000 K$ conventional SC ?

Taken from Y. Kasahara et al., (2014)

SC lies next to Mott

Strongly correlated unconventional SC ?

Pairing mechanism of doped C₆₀

SCDFT= Extension of DFT Oliveira et al., PRL 60, 2430 (1988) Kreibich & Gross PRL 86, 2984 (2001) $\hat{H}_{e} = \hat{T}_{e} + \hat{W}_{ee} + \int \hat{\rho} v(r) d^{3}r - \int d^{3}r \int d^{3}r' \left(\hat{\chi}(r, r') \Delta^{*}(r, r') + \text{H.c.} \right)$ $\rho(r) = \left\langle \sum_{\sigma=\uparrow\downarrow} \hat{\psi}_{\sigma}^{+}(r) \hat{\psi}_{\sigma}(r) \right\rangle \quad \text{electron density}$ $\chi(r, r') = \left\langle \hat{\psi}_{\uparrow}(r) \hat{\psi}_{\downarrow}(r') \right\rangle \quad \text{anomalous density}$

For $T < T_c$, Δ , $\chi \neq 0$

DFT for superconductors

M. Lüders et al, PRB <u>72</u>, 024545 (2005) M. Marques et al, PRB <u>72</u>, 024546 (2005)

Linearized gap
equation
$$\Delta_{i} = \frac{-1}{2} \sum_{j} F_{ij}^{Hxc} \frac{\tanh[\beta \xi_{j}/2]}{\xi_{j}} \Delta_{j}$$
$$F_{ij}^{Hxc} = \frac{\delta^{2}(E_{H} + F_{xc})}{\delta \chi_{i}^{*} \delta \chi_{j}}$$
$$E_{H} = \frac{1}{2} \int d^{3}r \int d^{3}r' \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} + \int d^{3}r \int d^{3}r' \frac{|\chi(\mathbf{r}, \mathbf{r'})|^{2}}{|\mathbf{r} - \mathbf{r'}|}$$

Once F_{xc} is given, we can calculate T_c without adjustable parameters

SCDFT calculation for simple metals

SCDFT accurately reproduces T_c^{exp} of conventional SC

SCDFT calculation for MgB₂

T [K]

SCDFT calculation for A₃C₆₀

 $\rm T_c$ is significantly underestimated: Conventional scenario does not explain high $\rm T_c$ in $\rm C_{60}$

Pairing mechanism of doped C₆₀

Taken from O. Gunnarsson, RMP 69, 575 (1997)

 $k_B T_C = \hbar \omega_D \exp(-1/N(E_F)V)$ $\omega_D \sim 1000 \text{K}$ conventional SC ? Taken from Y. Kasahara et al., (2014)

SC lies next to Mott

Strongly correlated unconventional SC ?

Low-energy effective model for A₃C₆₀

$$-t\sum_{\langle ija\rangle}c^{+}_{ia\sigma}c_{ja\sigma}$$

Kinetic Term

 t_{1u} 3bands **W** ~ 0.6 eV

RAVITO

$$+\frac{U}{2}\sum_{i}n_{i}^{2}$$

Coulomb Repulsion U > W

$$+J(2S_i^2+\frac{1}{2}L_i^2)$$

Ele-ph (Jahn-Teller) interaction > 0 Hund's rule coupling < 0

J > 0 favors minimum S & L (inverted Hund's rule)

M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Science 296, 2364 (2002)

RAWITA

"heavy" quasiparticles experience the bare attraction and reduced repulsion

J is related to Spin and Orbital Degrees of Freedom Still active when charge fluctuations are frozen by correlations Even in the Mott state the singlet energy gain is *J*

Ab initio downfolding

Let us consider to derive a low-energy Hamiltonian from first principles and solve it by means of a non-perturbative method (extended DMFT)

$$\begin{split} \mathcal{H} &= \sum_{\mathbf{k}} \sum_{ij} \left[\mathcal{H}_{0}^{(\mathrm{w})}(\mathbf{k}) \right]_{ij} c_{i\mathbf{k}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k'}} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{i'\mathbf{k'}}^{\sigma'\dagger} c_{j'\mathbf{k'}+\mathbf{q}}^{\sigma} c_{j\mathbf{k}}^{\sigma} \\ &+ \sum_{\mathbf{q}\nu} \sum_{\mathbf{k}} \sum_{ij} \sum_{\sigma} g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} \left(b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger} \right) + \sum_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu}^{(p)} b_{\mathbf{q}\nu}^{\dagger} b_{\mathbf{q}\nu} \end{split}$$

Nomura, Nakamura & RA, PRB 85, 155452 (2012)

Constrained RPA

$$W = \left(1 - v\chi\right)^{-1} v$$

Full RPA polarizability:

$$\chi = \sum_{i}^{occ} \sum_{j}^{unocc} \frac{\psi_{i}(r)\psi_{j}^{*}(r)\psi_{i}^{*}(r')\psi_{j}(r')}{\omega - \varepsilon_{j} + \varepsilon_{i} \pm i\delta}$$
$$t_{1u} \qquad t_{1u} \qquad$$

Constrained RPA method

ίw

Aryasetiawan et al, PRB 70, 195104 (2004) Solovyev-Imada, PRB 71, 045103 (2005)

Hubbard U of C₆₀ superconductors

Larger $U \rightarrow$ higher T_c Nomura, Nakamura, RA, PRB85 155452(2012)

R.Anita

Hund J of C₆₀ superconductors

 J_{Hund} ~0.035 eV (much smaller than 10% of U)

Ab initio derivation of low-energy Hamiltonian

$$\mathcal{H} = \sum_{\mathbf{k}} \sum_{ij} \left[\mathcal{H}_{0}^{(\mathbf{w})}(\mathbf{k}) \right]_{ij} c_{i\mathbf{k}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}} \sum_{\mathbf{k}\mathbf{k}'} \sum_{ij,i'j'} \sum_{\sigma\sigma'} U_{ij,i'j'}^{(p)}(\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{i'\mathbf{k}'}^{\sigma'\dagger} c_{j'\mathbf{k}'+\mathbf{q}}^{\sigma} c_{j\mathbf{k}}^{\sigma} + \sum_{\mathbf{q}\nu} \sum_{\mathbf{k}} \sum_{ij} \sum_{j} \sum_{\sigma} g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q}) c_{i\mathbf{k}+\mathbf{q}}^{\sigma\dagger} c_{j\mathbf{k}}^{\sigma} \left(b_{\mathbf{q}\nu} + b_{-\mathbf{q}\nu}^{\dagger} \right) + \sum_{\mathbf{q}\nu} \omega_{\mathbf{q}\nu}^{(p)} b_{\mathbf{q}\nu}^{\dagger} b_{\mathbf{q}\nu}$$

How to evaluate $g_{ij}^{(p)\nu}(\mathbf{k},\mathbf{q})$ and $\omega_{\mathbf{q}\nu}^{(p)}$?

We have to exclude the effect of low-energy screening (we need to estimate partially screened values)

cDFPT method

Y. Nomura, K. Nakamura and RA, PRL112 027002 (2014)

cf) Talk by M. Casula

Density functional perturbation theory

In DFT, physical quantities are represented in terms of ρ

 $E[\rho] = V[\rho]$

R.Arita

Constrained DFPT

$$\Delta \rho = 2 \sum_{n} \psi_{n}^{*} \Delta \psi_{n}$$
$$\Delta \psi_{n}(\mathbf{r}) = \sum_{m \neq n} \psi_{m}(\mathbf{r}) \frac{\langle \psi_{m} | \Delta V_{SCF} | \psi_{n} \rangle}{\epsilon_{n} - \epsilon_{m}}$$

If ψ_n belongs to the target subspace, we modify the sum over *m* as

$$\sum_{m} \longrightarrow \sum_{m \in occ., vir.}$$

exclude the target-target processes
We can obtain $\Delta \rho^{(p)}$ and then
 $\omega^{(p)}$ and $g^{(p)}$

 $-\epsilon_m$

R.Arita

Phonon-mediated J vs Hund's J

 $J_{ph} = \begin{array}{c} D^{(p)}(\omega) \\ g^{(p)} \\ g^{(p)} \\ g^{(p)} \end{array}$

	K ₃ C ₆₀	Rb_3C_{60}	Cs ₃ C ₆₀
J _{Hund} (eV)	-0.031	-0.034	-0.035
J _{ph} (eV)	0.050	0.051	0.051

 $J_{\text{eff}}=J_{\text{ph}}+J_{\text{hund}}>0$ (inverted Hund's coupling)

Ab initio downfolding

Let us consider to derive a low-energy Hamiltonian from first principles and solve it by means of a non-perturbative method (extended DMFT)

Model Analysis: Dynamical Mean Field theory

DMFT maps the lattice many-body problem with interactions U on every site onto a single-site problem where the interaction has been replaced by the self-energy Σ except for a single site.

To study SC, we explicitly consider the anomalous Green's function:

$$\hat{G}(\mathbf{k},\tau) \equiv -\langle T\Psi_{\mathbf{k}}(\tau)\Psi_{\mathbf{k}}^{+}(0)\rangle$$

$$F(\mathbf{k},\tau) \equiv -\langle TC_{\mathbf{k}\uparrow}(\tau)C_{-\mathbf{k}\downarrow}(0)\rangle$$

$$= \begin{pmatrix} G(\mathbf{k},\tau) & F(\mathbf{k},\tau) \\ F(\mathbf{k},\tau)^{*} & -G(-\mathbf{k},-\tau) \end{pmatrix}$$

Effective impurity model is solved by CTQMC (CT-HYB) E. Gull et al., RMP 2011

Phonon Contribution

Lang-Firsov transformation (1962)

$$\begin{split} H_{\rm loc} &= -\mu(n_{\uparrow} + n_{\downarrow}) + Un_{\uparrow}n_{\downarrow} + \sqrt{2}\lambda(n_{\uparrow} + n_{\downarrow} - 1)X + \frac{\omega_0}{2}(X^2 + P^2) \\ X &= (b^{\dagger} + b)/\sqrt{2} \qquad P = (b^{\dagger} - b)/i\sqrt{2}, \\ \tilde{H}_{\rm loc} &= e^{iPX_0}\dot{H}_{\rm loc}e^{-iPX_0} \implies \tilde{H}_{\rm loc} = -\tilde{\mu}(\tilde{n}_{\uparrow} + \tilde{n}_{\downarrow}) + \tilde{U}\tilde{n}_{\uparrow}\tilde{n}_{\downarrow} + \frac{\omega_0}{2}(X^2 + P^2). \end{split}$$

$$\tilde{\mu} = \mu - \lambda^2 / \omega_0$$
 $\tilde{U} = U - 2\lambda^2 / \omega_0$

The phonon contribution can be interpreted as an interaction $K(\tau - \tau')$

(Werner & Millis PRL2010)

Off-site Coulomb interaction: Extended DMFT

A.M. Senguputa and A. Georges, PRB 1995Q. Si and J.L. Smith, PRL 1996P. Sun and G. Kotliar, PRB 2002, PRL 2004, ...

Interaction parameters in the effective impurity model

Result: Superconductivity

Temperature dependence

Finite anomalous self-energy

Taken from Y. Ihara et al., EPL 94, 37007 (2011)

Result: Superconductivity

Taken from Y. Ihara et al., EPL 94, 37007 (2011)

number of self-consistent loops

Result: Mott transition

Low-spin state favored

Result: Mott transition

Phase diagram

SC phase with $T_c \sim 30$ K close to MI phase reproduced by <u>fully non-empirical calculation</u>

Conclusion: Mechanism of SC in A₃C₆₀

 Conventional scenario
 SCDFT does not reproduce high T_c R. Akashi & RA, PRB 2013

Unconventional scenario

Ab initio derivation of low-energy Hamiltonian

Y. Nomura, K. Nakamura & RA, PRB2012, PRL2014

 EDMFT analysis: SC phase with T_c~30K close to MI phase reproduced by fully non-empirical calculation

