Downfolding electron-phonon Hamiltonians from ab-initio calculations: application to K₃Picene

<u>Michele Casula</u>, Francesco Mauri CNRS and Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Pierre and Marie Curie University, Paris, France

> Gianluca Giovannetti, Massimo Capone CNR and SISSA, Trieste, Italy

> > Philipp Werner University of Fribourg, Switzerland

Superconductivity in carbon based materials

Physics takes place at states above the HOMO level (HOMO-LUMO gap usually large)

General properties of molecular crystals

- Small bandwidth \rightarrow large U/t \rightarrow strong electron-electron correlation
- Large electron-phonon coupling (phonon mode activation under electron doping, Jahn-Teller effect for high symmetry molecules)
- Competition (or cooperation!) between strong electron-electron and electron-phonon couplings

Model these systems is challenging! The "usual" framework is the Hubbard-Holstein Hamiltonian

$$H = \sum_{ij} \sum_{\alpha\beta} t_{ij}^{\alpha\beta} c_{i\alpha}^{\dagger} c_{j\beta} + \sum_{\alpha\beta} U^{\alpha\beta} \hat{n}_{\alpha} \hat{n}_{\beta} + \sum_{i\alpha\beta} (a_i + a_i^{\dagger}) g^{\alpha\beta} c_{i\alpha}^{\dagger} c_{i\beta} + \omega \sum_i a_i^{\dagger} a_i$$

We would like to have model parameters from ab-initio calculations

"Downfolding" model parameters from ab-initio

Keep in the model only electrons above HOMO

\rightarrow Tracing-out high energy degrees of freedom:

- high-energy screening processes must be included in the lowenergy model in an effective way
- parameters renormalized by electron-electron interaction:

Partially screened U by

constrained RPA Aryasetiawan et al. PRB **70**, 195104 (2004) Miyake et al. PRB **61**, 7172 (2000) Miyake et al. PRB **80**, 155134 (2009) Casula et al. PRL **109**, 126408 (2012)

<u>**Partially**</u> screened g and ω by constrained density functional perturbation theory (DFPT)

Nomura et al. PRL 112, 027002 (2014)

How to get electron-phonon parameters?

- Usually geometry, ω , and g computed from DFT and DFPT in the relaxed system including the low-energy manifold

→ fully screened couplings!!!

 We need to <u>undress the DFT phonon propagator</u> <u>from low-energy electron-phonon processes</u> to get the "bare" (partially screened) quantities of the model!

Incorrect vs correct phonon frequency and geometry

Take for the moment a classical phonon model Find the energy minimum of $E = E(r) = \langle H(r) \rangle$ r_i : phonon displacement \rightarrow geometry relaxation Curvature around minimum \rightarrow "dressed" frequency

Incorrect vs correct phonon frequency and geometry

Take for the moment a classical phonon model Find the energy minimum of $E = E(r) = \langle H(r) \rangle$ r_i : phonon displacement \rightarrow geometry relaxation Curvature around minimum \rightarrow "dressed" frequency

Incorrect vs correct phonon frequency and geometry

Take for the moment a classical phonon model Find the energy minimum of $E = E(r) = \langle H(r) \rangle$ r_i : phonon displacement \rightarrow geometry relaxation Curvature around minimum \rightarrow "dressed" frequency

Michele Casula Downfolding electron-phonon Hamiltonians from ab-initio calculations

Fixing the model parameters

$$H = \sum_{ij\sigma} t_{ij\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} + \sum_{i\sigma} r_i \delta V c_{i\sigma}^{\dagger} c_{i\sigma} + \frac{\omega_{\text{bare}}^2}{2} \sum_i (r_i - r_0)^2$$

 ω_{bare} and r_0 such that the following Eqs are both satisfied

$$\frac{\partial \langle H_{\text{el-ph}} \rangle}{\partial r_i} \bigg|_{r_i = 0} = 0$$

Relaxed geometry equal to ab-initio equilibrium geometry

$$\frac{\partial^2 \langle H_{\text{el-ph}} \rangle}{\partial r_i^2} \bigg|_{r_i = 0} = \omega_{\text{dressed}}^2$$

Energy curvature equal to ab-initio curvature

Quantizing the phonons

$$H_{\text{el-ph}} = H_{\text{tb}} + \sum_{\alpha\beta\sigma i} \sqrt{2}x^0 g_{\alpha\beta}^{\text{bare}} c_{\alpha\sigma i}^{\dagger} c_{\beta\sigma i}$$
$$+ \sum_{\alpha\beta\sigma i} (a_i + a_i^{\dagger}) g_{\alpha\beta}^{\text{bare}} c_{\alpha\sigma i}^{\dagger} c_{\beta\sigma i} + \omega_{\text{bare}} \sum_i a_i^{\dagger} a_i$$

where
$$g_{\alpha\beta}^{\text{bare}} = \delta V_{\alpha\beta} / \sqrt{2\omega_{\text{bare}}}$$

 $x_i = \sqrt{\omega_{\text{bare}}} (r_i - r^0) = \langle a_i + a_i^{\dagger} \rangle / \sqrt{2}$
 $x^0 = \sqrt{\omega_{\text{bare}}} r^0$

Quantizing the phonons

$$H_{\text{el-ph}} = H_{\text{tb}} + \sum_{\alpha\beta\sigma i} \sqrt{2}x^0 g_{\alpha\beta}^{\text{bare}} c_{\alpha\sigma i}^{\dagger} c_{\beta\sigma i}$$
$$+ \sum_{\alpha\beta\sigma i} (a_i + a_i^{\dagger}) g_{\alpha\beta}^{\text{bare}} c_{\alpha\sigma i}^{\dagger} c_{\beta\sigma i} + \omega_{\text{bare}} \sum_i a_i^{\dagger} a_i$$

where
$$g_{\alpha\beta}^{\text{bare}} = \delta V_{\alpha\beta} / \sqrt{2\omega_{\text{bare}}}$$

 $x_i = \sqrt{\omega_{\text{bare}}} (r_i - r^0) = \langle a_i + a_i^{\dagger} \rangle / \sqrt{2}$
 $x^0 = \sqrt{\omega_{\text{bare}}} r^0$

Electron-phonon double counting (EP-DC) correction:

it counteracts the band deformation due to low-energy geometry relaxation effects ALREADY included in the DFT solution of the filled system.

Application to K₃Picene

Mitsuhashi et al., Nature, 464, 76 (2010)

Michele Casula Downfolding electron-phonon Hamiltonians from ab-initio calculations

K₃Picene – Electronic Structure

Hamiltonians from ab-initio calculations

Including strong correlation

Downfolding to **3-band Hubbard Hamiltonian**

written in the Wannier molecular orbital basis (LUMO, LUMO+1, LUMO+2)

$$H = -\sum_{\substack{ml\sigma i \\ m \neq l}} t_{ij}^{ml} c_{m\sigma i}^{\dagger} c_{l\sigma j} + U \sum_{\substack{m\sigma i \\ m\sigma i}} n_{m\sigma i} n_{m-\sigma i} + U' \sum_{\substack{ml\sigma i \\ m \neq l}} n_{m\sigma i} n_{l-\sigma i} + (U'-J) \sum_{\substack{ml\sigma i \\ m \neq l}} n_{m\sigma i} n_{l\sigma i}$$

U=0.68 eV U'=0.63 eV J=0.10 eV derived by c-RPA with basis rotation from maximally localized Wannier functions (Nomura, Nakamura, Arita, PRB **85**, 155452 (2012))

c-RPA static limit values + bandwidth renormalization due to dynamic U

DFPT estimates of local el-ph coupling

Phonon frequency of the largest coupling G: ω_{DFT} = 0.193 eV = 1556 cm⁻¹

$$g^{\mathrm{bare}}_{lphaeta} = \left(egin{array}{ccccc} 0.066 & -0.010 & -0.002 \ -0.010 & -0.038 & -0.051 \ -0.002 & -0.051 & -0.018 \end{array}
ight)$$

Strong inter-orbital couplings!

Michele Casula Downfolding electron-phonon Hamiltonians from ab-initio calculations

ω_{bare} and \textbf{x}_{0} from our prescription

What is their impact on the final solution?

Michele Casula Downfolding electron-phonon Hamiltonians from ab-initio calculations

DMFT-ED spectral function

Solving the Hubbard-Holstein model by dynamical mean field theory (DMFT) with exact diagonalization (ED) (Hilbert space of the quantum impurity problem includes also the Holstein phonon)

11/21/14

Hamiltonians from ab-initio calculations

Conclusions

- Electron-phonon interaction acting on lowenergy electrons has a strong effect on the renormalized parameters (geometry, phonon frequency, electron-phonon vertex)
- Results extremely sensitive to the electronphonon double counting correction
- Effects of electron-phonon undressing largely unexplored in realistic electron-phonon models

Reference for this work

Giovannetti, Casula, Werner, Mauri, and Capone, Physical Review B **90**, 115435 (2014)