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Intercala7on	
  chemistry	
  for	
  graphite,	
  C60,	
  ….	

graphite C60	


 

・ KC8   : Tc = 0.14 K 
 

・ CaC6 : Tc = 11.5 K 

　　 

・ RbCs2C60  : Tc = 33 K 
 

・ Cs3C60 (7 kbar) : Tc = 35 - 38 K 

Intercala7on	
  of	
  alkal i 	
  atoms	
  to	
  	
  
make	
  the	
  system	
  superconductor	
  	


Physics	
  takes	
  place	
  at	
  states	
  above	
  the	
  HOMO	
  level	
  	
  
(HOMO-­‐LUMO	
  gap	
  usually	
  large)	
  



General	
  proper7es	
  of	
  molecular	
  crystals	
  
•  Small	
  bandwidth	
  à	
  large	
  U/t	
  à	
  strong	
  electron-­‐electron	
  correla7on	
  
•  Large	
  electron-­‐phonon	
  coupling	
  (phonon	
  mode	
  ac7va7on	
  under	
  

electron	
  doping,	
  Jahn-­‐Teller	
  effect	
  for	
  high	
  symmetry	
  molecules)	
  
•  Compe77on	
  (or	
  coopera7on!)	
  between	
  strong	
  electron-­‐electron	
  and	
  

electron-­‐phonon	
  couplings	
  
	
  

Model	
  these	
  systems	
  is	
  challenging!	
  The	
  “usual”	
  framework	
  is	
  the	
  
Hubbard-­‐Holstein	
  Hamiltonian	
  

	
  
	
  
	
  

We	
  would	
  like	
  to	
  have	
  model	
  parameters	
  from	
  ab-­‐ini7o	
  calcula7ons	
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“Downfolding”	
  model	
  parameters	
  from	
  ab-­‐ini7o	
  	
  

Keep	
  in	
  the	
  model	
  only	
  electrons	
  above	
  HOMO	
  	
  
àTracing-­‐out	
  high	
  energy	
  degrees	
  of	
  freedom:	
  
•  high-­‐energy	
  screening	
  processes	
  must	
  be	
  included	
  in	
  the	
  low-­‐

energy	
  model	
  in	
  an	
  effec7ve	
  way	
  
•  parameters	
  renormalized	
  by	
  electron-­‐electron	
  interac7on:	
  

ParAally	
  screened	
  U	
  by	
  	
  
constrained	
  RPA	
  
	
  
	
  
	
  
	
  
ParAally	
  screened	
  g	
  and	
  ω	
  by	
  constrained	
  density	
  func7onal	
  
perturba7on	
  theory	
  (DFPT)	
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U(ω) = υ
1−Pr (ω)υAryasetiawan et al. PRB 70, 195104 (2004) 

Miyake et al. PRB 61, 7172 (2000) 
Miyake et al. PRB 80, 155134 (2009) 
Casula et al. PRL 109, 126408 (2012) 

Nomura et al. PRL 112, 027002 (2014) 



	
  How	
  to	
  get	
  electron-­‐phonon	
  parameters?	
  

•  Usually	
  geometry,	
  ω,	
  and	
  g	
  computed	
  from	
  DFT	
  
and	
  DFPT	
  in	
  the	
  relaxed	
  system	
  including	
  the	
  low-­‐
energy	
  manifold	
  

	
  	
  	
  	
  à	
  fully	
  screened	
  couplings!!!	
  
	
  
•  We	
  need	
  to	
  undress	
  the	
  DFT	
  phonon	
  propagator	
  
from	
  low-­‐energy	
  electron-­‐phonon	
  processes	
  to	
  
get	
  the	
  “bare”	
  (par7ally	
  screened)	
  quan77es	
  of	
  
the	
  model!	
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Incorrect	
  vs	
  correct	
  	
  
phonon	
  frequency	
  and	
  geometry	
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Take	
  for	
  the	
  moment	
  a	
  classical	
  phonon	
  model	
  
Find	
  the	
  energy	
  minimum	
  of	
  	
  
	
  	
  	
  	
  	
  	
  :	
  phonon	
  displacement	
  à	
  geometry	
  relaxa7on	
  
Curvature	
  around	
  minimum	
  à	
  “dressed”	
  frequency	
  

H =
X

ij�

tij�c
†
i�ci� +

X

i�

ri�V c†i�ci� +
!DFT

2

2

X

i

r2i

ri
E = E(r) = hH(r)i

!dressed < !DFT

ri 6= 0



Incorrect	
  vs	
  correct	
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  frequency	
  and	
  geometry	
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Thus, the orbitals α generate the low-energy manifold of the
crystal.

To distinguish between the screening effects due to EE
and EP interactions, let us keep the system noninteracting in
the electron-electron part for the moment, while adding the
electron-phonon couplings to the model in Eq. (1). In the first
step, let us consider classical phonons. We parametrize the EP
coupling in the system as a single-mode Holstein phonon of
frequency ωbare, locally coupled to the electronic manifold of
Eq. (1) via matrix elements δVαβ [18]:

Hel-ph = Htb +
∑

αβσ i

riδVαβc
†
ασ icβσ i + ω2

bare

2

∑

i

(ri − r0)2,

(2)

with ri classical phonon displacements and r0 a shift which
sets the structural minimum. This is the most general way
of writing a translationally invariant Hamiltonian with local
harmonic oscillators locally coupled to the electrons. In
previous formulations, r0 has usually been neglected. Below,
we show that its value is in general nonzero and gives rise to
nontrivial effects.

As for the Htb part, the δVαβ EP couplings for the
noninteracting model in Eq. (2) can be estimated by ab initio
density functional perturbation theory (DFPT) calculations on
the relaxed and filled system. The bare phonon propagator with
frequency ωbare will then be screened by the EP interactions,
resulting in a dressed propagator of frequency ωdressed. This
will result also in a modified quadratic potential, subsequently
yielding a modification of the geometry due to the explicit
inclusion of the EP couplings in the low-energy manifold.

In our procedure the ωbare and r0 bare parameters are chosen
in such a way that the model solution at the given filling yields
the equilibrium geometry (ri = 0) and the phonon frequency
(ωdressed) of the physical system at the same filling. In other
words,

∂〈Hel-ph〉
∂ri

∣∣∣∣
ri=0

= 0,
∂2〈Hel-ph〉

∂r2
i

∣∣∣∣
ri=0

= ω2
dressed, (3)

i.e., the force vanishes at the equilibrium position and the
harmonic contribution to the ion displacement is ωdressed.
The two independent model parameters r0 and ωbare are then
univocally determined by solving the above set of equations.

By quantizing the phonon in Eq. (2) we obtain

Hel-ph = Htb +
∑

αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i

+
∑

αβσ i

(ai + a
†
i )gbare

αβ c
†
ασ icβσ i + ωbare

∑

i

a
†
i ai, (4)

where now gbare
αβ = δVαβ/

√
2ωbare, xi = √

ωbare(ri − r0) =
〈ai + a

†
i 〉/

√
2 is the dimensionless displacement, and x0 =√

ωbarer
0. Note that in this “standard” way of writing the

quantum EP model, there is an implicit dependence of the
gbare

αβ couplings to the bare phonon frequency ωbare. In Eq. (4),

the
∑

αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i term appears as a correction to

the usual EP Hamiltonian. A closer inspection reveals that
this term yields a band deformation related to the modified
geometry before filling the low-energy bands. This correction

is necessary as the tight-binding model is defined at the
given filling, while the bare quantities are computed by
undressing the system from the low-energy electrons. The
geometry deformation due to the change in filling is a genuine
manifestation of the electron-phonon coupling. Analogously,
the renormalization of the phonon frequency from ωbare to
ωdressed is due to the EP interaction acting on the low-energy
manifold.

Note that the spirit of including the EP-DC correction
provided by x0 is the same as for the DC correction of
the electronic part, necessary whenever an EE interaction is
explicitly added to Eq. (1). Usually, we require the EE-DC
correction to provide the original DFT band structure when
the many-body system is solved at the mean-field level.
Analogously, if we take the bare δVαβ as the variation of
the interaction due to the phonon displacement, we adjust
the EP-DC term such that the mean-field solution of the
model corresponds to the ab initio band structure, geometry,
and phonon frequency. This gives a prescription on how
to evaluate the EP term. Once δVαβ is computed from ab
initio calculations, ωbare and x0 are set by solving Eqs. (3)
self-consistently at the mean-field level. Importantly, the above
procedure can be implemented also in the presence of EE
interactions. We now apply our theory to K3 picene and
show the importance of including the EP-DC term to avoid
a significant overestimate of the effects of EP coupling.

III. APPLICATION TO K3 PICENE

A. Model

To study and reproduce the properties of K3 picene, we
choose the following low-energy Hamiltonian:

H = Hel-ph + εEE-DC

∑

ασ i

nασ i + U
∑

ασ i

nασ inα−σ i

+U ′
∑

αβσ i
α &= β

nασ inβ−σ i + (U ′ − J )
∑

αβσ i
α &= β

nασ inβσ i ,

(5)

where we add the EE part to Hel-ph in Eq. (4), parametrized
through U , U ′, and J Hubbard and Hund parameters. In this
case, the EE-DC correction εEE-DC is just a redefinition of the
chemical potential shift µ.

1. Electron-electron interactions

The parameters in Eq. (5) are obtained by ab initio DFT
calculations within the local density approximation (LDA)
carried out with the QUANTUM ESPRESSO [19] package. The
unit cell has been taken from powder diffraction data [8],
and the molecular coordinates have been relaxed by energy
minimization [12]. The hoppings t

αβ
ij of the tight-binding

model are derived from the Wannier construction [20], in
order to reproduce the LDA low-energy bands εmσ (k). The
maximally localized Wannier functions (MLWFs) are built by
choosing an energy window which includes bands originating
from the three lowest unoccupied molecular orbitals (LUMO,
LUMO + 1 and LUMO + 2) of the neutral molecule [21]. The
localized orbital set of Eq. (5) is defined by a rotation of the
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Thus, the orbitals α generate the low-energy manifold of the
crystal.

To distinguish between the screening effects due to EE
and EP interactions, let us keep the system noninteracting in
the electron-electron part for the moment, while adding the
electron-phonon couplings to the model in Eq. (1). In the first
step, let us consider classical phonons. We parametrize the EP
coupling in the system as a single-mode Holstein phonon of
frequency ωbare, locally coupled to the electronic manifold of
Eq. (1) via matrix elements δVαβ [18]:

Hel-ph = Htb +
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riδVαβc
†
ασ icβσ i + ω2

bare

2

∑

i

(ri − r0)2,

(2)

with ri classical phonon displacements and r0 a shift which
sets the structural minimum. This is the most general way
of writing a translationally invariant Hamiltonian with local
harmonic oscillators locally coupled to the electrons. In
previous formulations, r0 has usually been neglected. Below,
we show that its value is in general nonzero and gives rise to
nontrivial effects.

As for the Htb part, the δVαβ EP couplings for the
noninteracting model in Eq. (2) can be estimated by ab initio
density functional perturbation theory (DFPT) calculations on
the relaxed and filled system. The bare phonon propagator with
frequency ωbare will then be screened by the EP interactions,
resulting in a dressed propagator of frequency ωdressed. This
will result also in a modified quadratic potential, subsequently
yielding a modification of the geometry due to the explicit
inclusion of the EP couplings in the low-energy manifold.

In our procedure the ωbare and r0 bare parameters are chosen
in such a way that the model solution at the given filling yields
the equilibrium geometry (ri = 0) and the phonon frequency
(ωdressed) of the physical system at the same filling. In other
words,

∂〈Hel-ph〉
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= ω2
dressed, (3)

i.e., the force vanishes at the equilibrium position and the
harmonic contribution to the ion displacement is ωdressed.
The two independent model parameters r0 and ωbare are then
univocally determined by solving the above set of equations.

By quantizing the phonon in Eq. (2) we obtain

Hel-ph = Htb +
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†
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+
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ωbarer
0. Note that in this “standard” way of writing the

quantum EP model, there is an implicit dependence of the
gbare

αβ couplings to the bare phonon frequency ωbare. In Eq. (4),

the
∑

αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i term appears as a correction to

the usual EP Hamiltonian. A closer inspection reveals that
this term yields a band deformation related to the modified
geometry before filling the low-energy bands. This correction

is necessary as the tight-binding model is defined at the
given filling, while the bare quantities are computed by
undressing the system from the low-energy electrons. The
geometry deformation due to the change in filling is a genuine
manifestation of the electron-phonon coupling. Analogously,
the renormalization of the phonon frequency from ωbare to
ωdressed is due to the EP interaction acting on the low-energy
manifold.

Note that the spirit of including the EP-DC correction
provided by x0 is the same as for the DC correction of
the electronic part, necessary whenever an EE interaction is
explicitly added to Eq. (1). Usually, we require the EE-DC
correction to provide the original DFT band structure when
the many-body system is solved at the mean-field level.
Analogously, if we take the bare δVαβ as the variation of
the interaction due to the phonon displacement, we adjust
the EP-DC term such that the mean-field solution of the
model corresponds to the ab initio band structure, geometry,
and phonon frequency. This gives a prescription on how
to evaluate the EP term. Once δVαβ is computed from ab
initio calculations, ωbare and x0 are set by solving Eqs. (3)
self-consistently at the mean-field level. Importantly, the above
procedure can be implemented also in the presence of EE
interactions. We now apply our theory to K3 picene and
show the importance of including the EP-DC term to avoid
a significant overestimate of the effects of EP coupling.

III. APPLICATION TO K3 PICENE

A. Model

To study and reproduce the properties of K3 picene, we
choose the following low-energy Hamiltonian:

H = Hel-ph + εEE-DC

∑

ασ i

nασ i + U
∑

ασ i

nασ inα−σ i

+U ′
∑

αβσ i
α &= β

nασ inβ−σ i + (U ′ − J )
∑

αβσ i
α &= β

nασ inβσ i ,

(5)

where we add the EE part to Hel-ph in Eq. (4), parametrized
through U , U ′, and J Hubbard and Hund parameters. In this
case, the EE-DC correction εEE-DC is just a redefinition of the
chemical potential shift µ.

1. Electron-electron interactions

The parameters in Eq. (5) are obtained by ab initio DFT
calculations within the local density approximation (LDA)
carried out with the QUANTUM ESPRESSO [19] package. The
unit cell has been taken from powder diffraction data [8],
and the molecular coordinates have been relaxed by energy
minimization [12]. The hoppings t

αβ
ij of the tight-binding

model are derived from the Wannier construction [20], in
order to reproduce the LDA low-energy bands εmσ (k). The
maximally localized Wannier functions (MLWFs) are built by
choosing an energy window which includes bands originating
from the three lowest unoccupied molecular orbitals (LUMO,
LUMO + 1 and LUMO + 2) of the neutral molecule [21]. The
localized orbital set of Eq. (5) is defined by a rotation of the
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  !bare r0
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  geometry	
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  to	
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  curvature	
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  to	
  ab-­‐ini7o	
  curvature	
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Thus, the orbitals α generate the low-energy manifold of the
crystal.

To distinguish between the screening effects due to EE
and EP interactions, let us keep the system noninteracting in
the electron-electron part for the moment, while adding the
electron-phonon couplings to the model in Eq. (1). In the first
step, let us consider classical phonons. We parametrize the EP
coupling in the system as a single-mode Holstein phonon of
frequency ωbare, locally coupled to the electronic manifold of
Eq. (1) via matrix elements δVαβ [18]:
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riδVαβc
†
ασ icβσ i + ω2
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2

∑

i

(ri − r0)2,

(2)

with ri classical phonon displacements and r0 a shift which
sets the structural minimum. This is the most general way
of writing a translationally invariant Hamiltonian with local
harmonic oscillators locally coupled to the electrons. In
previous formulations, r0 has usually been neglected. Below,
we show that its value is in general nonzero and gives rise to
nontrivial effects.

As for the Htb part, the δVαβ EP couplings for the
noninteracting model in Eq. (2) can be estimated by ab initio
density functional perturbation theory (DFPT) calculations on
the relaxed and filled system. The bare phonon propagator with
frequency ωbare will then be screened by the EP interactions,
resulting in a dressed propagator of frequency ωdressed. This
will result also in a modified quadratic potential, subsequently
yielding a modification of the geometry due to the explicit
inclusion of the EP couplings in the low-energy manifold.

In our procedure the ωbare and r0 bare parameters are chosen
in such a way that the model solution at the given filling yields
the equilibrium geometry (ri = 0) and the phonon frequency
(ωdressed) of the physical system at the same filling. In other
words,

∂〈Hel-ph〉
∂ri

∣∣∣∣
ri=0

= 0,
∂2〈Hel-ph〉

∂r2
i

∣∣∣∣
ri=0

= ω2
dressed, (3)

i.e., the force vanishes at the equilibrium position and the
harmonic contribution to the ion displacement is ωdressed.
The two independent model parameters r0 and ωbare are then
univocally determined by solving the above set of equations.

By quantizing the phonon in Eq. (2) we obtain

Hel-ph = Htb +
∑
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+
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where now gbare
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√
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〈ai + a
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√
2 is the dimensionless displacement, and x0 =√

ωbarer
0. Note that in this “standard” way of writing the

quantum EP model, there is an implicit dependence of the
gbare

αβ couplings to the bare phonon frequency ωbare. In Eq. (4),

the
∑

αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i term appears as a correction to

the usual EP Hamiltonian. A closer inspection reveals that
this term yields a band deformation related to the modified
geometry before filling the low-energy bands. This correction

is necessary as the tight-binding model is defined at the
given filling, while the bare quantities are computed by
undressing the system from the low-energy electrons. The
geometry deformation due to the change in filling is a genuine
manifestation of the electron-phonon coupling. Analogously,
the renormalization of the phonon frequency from ωbare to
ωdressed is due to the EP interaction acting on the low-energy
manifold.

Note that the spirit of including the EP-DC correction
provided by x0 is the same as for the DC correction of
the electronic part, necessary whenever an EE interaction is
explicitly added to Eq. (1). Usually, we require the EE-DC
correction to provide the original DFT band structure when
the many-body system is solved at the mean-field level.
Analogously, if we take the bare δVαβ as the variation of
the interaction due to the phonon displacement, we adjust
the EP-DC term such that the mean-field solution of the
model corresponds to the ab initio band structure, geometry,
and phonon frequency. This gives a prescription on how
to evaluate the EP term. Once δVαβ is computed from ab
initio calculations, ωbare and x0 are set by solving Eqs. (3)
self-consistently at the mean-field level. Importantly, the above
procedure can be implemented also in the presence of EE
interactions. We now apply our theory to K3 picene and
show the importance of including the EP-DC term to avoid
a significant overestimate of the effects of EP coupling.

III. APPLICATION TO K3 PICENE

A. Model

To study and reproduce the properties of K3 picene, we
choose the following low-energy Hamiltonian:

H = Hel-ph + εEE-DC

∑

ασ i

nασ i + U
∑

ασ i

nασ inα−σ i

+U ′
∑

αβσ i
α &= β

nασ inβ−σ i + (U ′ − J )
∑

αβσ i
α &= β

nασ inβσ i ,

(5)

where we add the EE part to Hel-ph in Eq. (4), parametrized
through U , U ′, and J Hubbard and Hund parameters. In this
case, the EE-DC correction εEE-DC is just a redefinition of the
chemical potential shift µ.

1. Electron-electron interactions

The parameters in Eq. (5) are obtained by ab initio DFT
calculations within the local density approximation (LDA)
carried out with the QUANTUM ESPRESSO [19] package. The
unit cell has been taken from powder diffraction data [8],
and the molecular coordinates have been relaxed by energy
minimization [12]. The hoppings t

αβ
ij of the tight-binding

model are derived from the Wannier construction [20], in
order to reproduce the LDA low-energy bands εmσ (k). The
maximally localized Wannier functions (MLWFs) are built by
choosing an energy window which includes bands originating
from the three lowest unoccupied molecular orbitals (LUMO,
LUMO + 1 and LUMO + 2) of the neutral molecule [21]. The
localized orbital set of Eq. (5) is defined by a rotation of the
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Thus, the orbitals α generate the low-energy manifold of the
crystal.

To distinguish between the screening effects due to EE
and EP interactions, let us keep the system noninteracting in
the electron-electron part for the moment, while adding the
electron-phonon couplings to the model in Eq. (1). In the first
step, let us consider classical phonons. We parametrize the EP
coupling in the system as a single-mode Holstein phonon of
frequency ωbare, locally coupled to the electronic manifold of
Eq. (1) via matrix elements δVαβ [18]:

Hel-ph = Htb +
∑

αβσ i

riδVαβc
†
ασ icβσ i + ω2

bare

2

∑

i

(ri − r0)2,

(2)

with ri classical phonon displacements and r0 a shift which
sets the structural minimum. This is the most general way
of writing a translationally invariant Hamiltonian with local
harmonic oscillators locally coupled to the electrons. In
previous formulations, r0 has usually been neglected. Below,
we show that its value is in general nonzero and gives rise to
nontrivial effects.

As for the Htb part, the δVαβ EP couplings for the
noninteracting model in Eq. (2) can be estimated by ab initio
density functional perturbation theory (DFPT) calculations on
the relaxed and filled system. The bare phonon propagator with
frequency ωbare will then be screened by the EP interactions,
resulting in a dressed propagator of frequency ωdressed. This
will result also in a modified quadratic potential, subsequently
yielding a modification of the geometry due to the explicit
inclusion of the EP couplings in the low-energy manifold.

In our procedure the ωbare and r0 bare parameters are chosen
in such a way that the model solution at the given filling yields
the equilibrium geometry (ri = 0) and the phonon frequency
(ωdressed) of the physical system at the same filling. In other
words,
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∣∣∣∣
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= 0,
∂2〈Hel-ph〉

∂r2
i

∣∣∣∣
ri=0

= ω2
dressed, (3)

i.e., the force vanishes at the equilibrium position and the
harmonic contribution to the ion displacement is ωdressed.
The two independent model parameters r0 and ωbare are then
univocally determined by solving the above set of equations.

By quantizing the phonon in Eq. (2) we obtain
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αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i

+
∑

αβσ i

(ai + a
†
i )gbare

αβ c
†
ασ icβσ i + ωbare

∑

i

a
†
i ai, (4)
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√
2ωbare, xi = √

ωbare(ri − r0) =
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†
i 〉/

√
2 is the dimensionless displacement, and x0 =√
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0. Note that in this “standard” way of writing the

quantum EP model, there is an implicit dependence of the
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αβ couplings to the bare phonon frequency ωbare. In Eq. (4),

the
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αβσ i

√
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αβ c
†
ασ icβσ i term appears as a correction to

the usual EP Hamiltonian. A closer inspection reveals that
this term yields a band deformation related to the modified
geometry before filling the low-energy bands. This correction

is necessary as the tight-binding model is defined at the
given filling, while the bare quantities are computed by
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manifestation of the electron-phonon coupling. Analogously,
the renormalization of the phonon frequency from ωbare to
ωdressed is due to the EP interaction acting on the low-energy
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provided by x0 is the same as for the DC correction of
the electronic part, necessary whenever an EE interaction is
explicitly added to Eq. (1). Usually, we require the EE-DC
correction to provide the original DFT band structure when
the many-body system is solved at the mean-field level.
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the EP-DC term such that the mean-field solution of the
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and phonon frequency. This gives a prescription on how
to evaluate the EP term. Once δVαβ is computed from ab
initio calculations, ωbare and x0 are set by solving Eqs. (3)
self-consistently at the mean-field level. Importantly, the above
procedure can be implemented also in the presence of EE
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show the importance of including the EP-DC term to avoid
a significant overestimate of the effects of EP coupling.
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∑

αβσ i
α &= β

nασ inβσ i ,

(5)

where we add the EE part to Hel-ph in Eq. (4), parametrized
through U , U ′, and J Hubbard and Hund parameters. In this
case, the EE-DC correction εEE-DC is just a redefinition of the
chemical potential shift µ.

1. Electron-electron interactions

The parameters in Eq. (5) are obtained by ab initio DFT
calculations within the local density approximation (LDA)
carried out with the QUANTUM ESPRESSO [19] package. The
unit cell has been taken from powder diffraction data [8],
and the molecular coordinates have been relaxed by energy
minimization [12]. The hoppings t
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Thus, the orbitals α generate the low-energy manifold of the
crystal.

To distinguish between the screening effects due to EE
and EP interactions, let us keep the system noninteracting in
the electron-electron part for the moment, while adding the
electron-phonon couplings to the model in Eq. (1). In the first
step, let us consider classical phonons. We parametrize the EP
coupling in the system as a single-mode Holstein phonon of
frequency ωbare, locally coupled to the electronic manifold of
Eq. (1) via matrix elements δVαβ [18]:

Hel-ph = Htb +
∑

αβσ i

riδVαβc
†
ασ icβσ i + ω2

bare

2

∑

i

(ri − r0)2,

(2)

with ri classical phonon displacements and r0 a shift which
sets the structural minimum. This is the most general way
of writing a translationally invariant Hamiltonian with local
harmonic oscillators locally coupled to the electrons. In
previous formulations, r0 has usually been neglected. Below,
we show that its value is in general nonzero and gives rise to
nontrivial effects.

As for the Htb part, the δVαβ EP couplings for the
noninteracting model in Eq. (2) can be estimated by ab initio
density functional perturbation theory (DFPT) calculations on
the relaxed and filled system. The bare phonon propagator with
frequency ωbare will then be screened by the EP interactions,
resulting in a dressed propagator of frequency ωdressed. This
will result also in a modified quadratic potential, subsequently
yielding a modification of the geometry due to the explicit
inclusion of the EP couplings in the low-energy manifold.

In our procedure the ωbare and r0 bare parameters are chosen
in such a way that the model solution at the given filling yields
the equilibrium geometry (ri = 0) and the phonon frequency
(ωdressed) of the physical system at the same filling. In other
words,

∂〈Hel-ph〉
∂ri

∣∣∣∣
ri=0

= 0,
∂2〈Hel-ph〉

∂r2
i

∣∣∣∣
ri=0

= ω2
dressed, (3)

i.e., the force vanishes at the equilibrium position and the
harmonic contribution to the ion displacement is ωdressed.
The two independent model parameters r0 and ωbare are then
univocally determined by solving the above set of equations.

By quantizing the phonon in Eq. (2) we obtain

Hel-ph = Htb +
∑

αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i

+
∑

αβσ i

(ai + a
†
i )gbare

αβ c
†
ασ icβσ i + ωbare

∑
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†
i ai, (4)

where now gbare
αβ = δVαβ/

√
2ωbare, xi = √

ωbare(ri − r0) =
〈ai + a

†
i 〉/

√
2 is the dimensionless displacement, and x0 =√

ωbarer
0. Note that in this “standard” way of writing the

quantum EP model, there is an implicit dependence of the
gbare

αβ couplings to the bare phonon frequency ωbare. In Eq. (4),

the
∑

αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i term appears as a correction to

the usual EP Hamiltonian. A closer inspection reveals that
this term yields a band deformation related to the modified
geometry before filling the low-energy bands. This correction

is necessary as the tight-binding model is defined at the
given filling, while the bare quantities are computed by
undressing the system from the low-energy electrons. The
geometry deformation due to the change in filling is a genuine
manifestation of the electron-phonon coupling. Analogously,
the renormalization of the phonon frequency from ωbare to
ωdressed is due to the EP interaction acting on the low-energy
manifold.

Note that the spirit of including the EP-DC correction
provided by x0 is the same as for the DC correction of
the electronic part, necessary whenever an EE interaction is
explicitly added to Eq. (1). Usually, we require the EE-DC
correction to provide the original DFT band structure when
the many-body system is solved at the mean-field level.
Analogously, if we take the bare δVαβ as the variation of
the interaction due to the phonon displacement, we adjust
the EP-DC term such that the mean-field solution of the
model corresponds to the ab initio band structure, geometry,
and phonon frequency. This gives a prescription on how
to evaluate the EP term. Once δVαβ is computed from ab
initio calculations, ωbare and x0 are set by solving Eqs. (3)
self-consistently at the mean-field level. Importantly, the above
procedure can be implemented also in the presence of EE
interactions. We now apply our theory to K3 picene and
show the importance of including the EP-DC term to avoid
a significant overestimate of the effects of EP coupling.

III. APPLICATION TO K3 PICENE

A. Model

To study and reproduce the properties of K3 picene, we
choose the following low-energy Hamiltonian:

H = Hel-ph + εEE-DC

∑

ασ i

nασ i + U
∑

ασ i

nασ inα−σ i

+U ′
∑

αβσ i
α &= β

nασ inβ−σ i + (U ′ − J )
∑

αβσ i
α &= β

nασ inβσ i ,

(5)

where we add the EE part to Hel-ph in Eq. (4), parametrized
through U , U ′, and J Hubbard and Hund parameters. In this
case, the EE-DC correction εEE-DC is just a redefinition of the
chemical potential shift µ.

1. Electron-electron interactions

The parameters in Eq. (5) are obtained by ab initio DFT
calculations within the local density approximation (LDA)
carried out with the QUANTUM ESPRESSO [19] package. The
unit cell has been taken from powder diffraction data [8],
and the molecular coordinates have been relaxed by energy
minimization [12]. The hoppings t

αβ
ij of the tight-binding

model are derived from the Wannier construction [20], in
order to reproduce the LDA low-energy bands εmσ (k). The
maximally localized Wannier functions (MLWFs) are built by
choosing an energy window which includes bands originating
from the three lowest unoccupied molecular orbitals (LUMO,
LUMO + 1 and LUMO + 2) of the neutral molecule [21]. The
localized orbital set of Eq. (5) is defined by a rotation of the
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Thus, the orbitals α generate the low-energy manifold of the
crystal.

To distinguish between the screening effects due to EE
and EP interactions, let us keep the system noninteracting in
the electron-electron part for the moment, while adding the
electron-phonon couplings to the model in Eq. (1). In the first
step, let us consider classical phonons. We parametrize the EP
coupling in the system as a single-mode Holstein phonon of
frequency ωbare, locally coupled to the electronic manifold of
Eq. (1) via matrix elements δVαβ [18]:
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∑
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(ri − r0)2,

(2)

with ri classical phonon displacements and r0 a shift which
sets the structural minimum. This is the most general way
of writing a translationally invariant Hamiltonian with local
harmonic oscillators locally coupled to the electrons. In
previous formulations, r0 has usually been neglected. Below,
we show that its value is in general nonzero and gives rise to
nontrivial effects.

As for the Htb part, the δVαβ EP couplings for the
noninteracting model in Eq. (2) can be estimated by ab initio
density functional perturbation theory (DFPT) calculations on
the relaxed and filled system. The bare phonon propagator with
frequency ωbare will then be screened by the EP interactions,
resulting in a dressed propagator of frequency ωdressed. This
will result also in a modified quadratic potential, subsequently
yielding a modification of the geometry due to the explicit
inclusion of the EP couplings in the low-energy manifold.

In our procedure the ωbare and r0 bare parameters are chosen
in such a way that the model solution at the given filling yields
the equilibrium geometry (ri = 0) and the phonon frequency
(ωdressed) of the physical system at the same filling. In other
words,
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dressed, (3)

i.e., the force vanishes at the equilibrium position and the
harmonic contribution to the ion displacement is ωdressed.
The two independent model parameters r0 and ωbare are then
univocally determined by solving the above set of equations.

By quantizing the phonon in Eq. (2) we obtain

Hel-ph = Htb +
∑
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+
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the
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ασ icβσ i term appears as a correction to

the usual EP Hamiltonian. A closer inspection reveals that
this term yields a band deformation related to the modified
geometry before filling the low-energy bands. This correction

is necessary as the tight-binding model is defined at the
given filling, while the bare quantities are computed by
undressing the system from the low-energy electrons. The
geometry deformation due to the change in filling is a genuine
manifestation of the electron-phonon coupling. Analogously,
the renormalization of the phonon frequency from ωbare to
ωdressed is due to the EP interaction acting on the low-energy
manifold.

Note that the spirit of including the EP-DC correction
provided by x0 is the same as for the DC correction of
the electronic part, necessary whenever an EE interaction is
explicitly added to Eq. (1). Usually, we require the EE-DC
correction to provide the original DFT band structure when
the many-body system is solved at the mean-field level.
Analogously, if we take the bare δVαβ as the variation of
the interaction due to the phonon displacement, we adjust
the EP-DC term such that the mean-field solution of the
model corresponds to the ab initio band structure, geometry,
and phonon frequency. This gives a prescription on how
to evaluate the EP term. Once δVαβ is computed from ab
initio calculations, ωbare and x0 are set by solving Eqs. (3)
self-consistently at the mean-field level. Importantly, the above
procedure can be implemented also in the presence of EE
interactions. We now apply our theory to K3 picene and
show the importance of including the EP-DC term to avoid
a significant overestimate of the effects of EP coupling.

III. APPLICATION TO K3 PICENE

A. Model

To study and reproduce the properties of K3 picene, we
choose the following low-energy Hamiltonian:

H = Hel-ph + εEE-DC

∑
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∑
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+U ′
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nασ inβ−σ i + (U ′ − J )
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(5)

where we add the EE part to Hel-ph in Eq. (4), parametrized
through U , U ′, and J Hubbard and Hund parameters. In this
case, the EE-DC correction εEE-DC is just a redefinition of the
chemical potential shift µ.

1. Electron-electron interactions

The parameters in Eq. (5) are obtained by ab initio DFT
calculations within the local density approximation (LDA)
carried out with the QUANTUM ESPRESSO [19] package. The
unit cell has been taken from powder diffraction data [8],
and the molecular coordinates have been relaxed by energy
minimization [12]. The hoppings t
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ij of the tight-binding

model are derived from the Wannier construction [20], in
order to reproduce the LDA low-energy bands εmσ (k). The
maximally localized Wannier functions (MLWFs) are built by
choosing an energy window which includes bands originating
from the three lowest unoccupied molecular orbitals (LUMO,
LUMO + 1 and LUMO + 2) of the neutral molecule [21]. The
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Phonon-driven metallicity from a model Hamiltonian of strongly correlated K3Picene.
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With dynamical mean-field theory, we study a model Hamiltonian for the electronic structure of potassium-
doped picene (K3Picene), recently reported to be a superconductor with critical temperature up to 18 K. The
Hamiltonian parameters are derived from ab-initio density functional theory. Our calculations include the ef-
fects of electron-electron interactions and local electron-phonon couplings. The electron-electron interaction
is sizeable and leads to a Mott insulator in the absence of coupling to the lattice. We show that the inter-band
electron-phonon coupling plays a key role: it reshuffles the orbital occupations, drives the system away from
a Mott insulating state and restores a bad metallic behavior from which superconductivity may emerge. This
effect is potentially relevant for other carbon based molecular crystals.

PACS numbers: 74.70.Wz,71.10.Fd,71.20.Tx,71.38.-k,74.70.Km

Introduction The recent discovery of superconductivity in
potassium-doped picene (K3picene), which reaches a criti-
cal temperature Tc of 18 K [1], stimulated the search for su-
perconducting phases in other similar materials. Soon after
that discovery, superconductivity was found in phenanthrene
[2], coronene [3], and 1,2:8,9-dibenzopentacene [4], by in-
tercalation with alkali atoms. These compounds belong to
the family of so-called “aromatic superconductors” (AS’s), as
they are all molecular crystals made of molecules with sev-
eral benzene rings. Like the fullerides [5], they are molecular
carbon based superconductors (MCBS’s), and thus appealing
from the viewpoint of potential applications. Indeed, Carbon’s
chemical and structural richness could open the way to syn-
thesize new higher Tc materials. However, the AS’s physics is
poorly understood, both experimentally and theoretically. For
instance, the crystal with the largest number of rings (1,2:8,9-
dibenzopentacene) features the highest Tc (33 K), in disagree-
ment with previous theoretical considerations [6]. A system-
atic study of their physical properties as a function of the num-
ber of carriers by doping and pressure is still lacking. More-
over, the metallicity and superconductivity found in this class
of materials is highly debated. One difficulty is to intercalate
large enough crystals and obtain superconductors with a suffi-
ciently high shielding fraction, and some experimental groups
have found an insulating behavior of K3picene at low temper-
ature [7]. A critical step in the experimental analysis is the
synthesis of these intercalated compounds.

From the theoretical point of view, the MCBS’s are charac-
terized by a tight competition between several energy scales.
Ab-initio density functional theory (DFT) calculations of
K3picene yield an electron-phonon coupling compatible with
the measured superconductivity [8, 9]. Given the narrow
bandwidth [10], the molecular (on-site) Coulomb repulsion
becomes relevant, and places K3picene in the strongly cor-
related regime, as pointed out by several recent theoretical
works [7, 11, 12]. Therefore, the interplay between strong
correlation and electron-phonon coupling is crucial to under-

stand the physical properties of K3Picene. Together with the
other MCBS’s, it is a playground to study phonon-driven su-
perconductivity close to the Mott regime, which should show
unconventional features and a strong renormalization of the
electron-phonon coupling [13].

In this Letter, we take into account a model electron-phonon
Hamiltonian for K3Picene, with local on-site Hubbard inter-
actions, and Holstein-like terms with intra- and inter-band ma-
trix elements, whose amplitudes have been determined by ab-
initio DFT calculations. We show that the spectral function in
the paramagnetic phase is significantly modified by the inter-
band Holstein couplings. They induce a strong reshuffling of
orbital occupations and thereby preserve a metallic character
of the system, despite the strong Hubbard repulsion, which
in the absence of inter-band electron-phonon coupling would
lead to a Mott insulator.

Methods To study and reproduce the properties of
K3Picene, we choose the following low-energy Hamiltonian:

H = −
∑

mlσij

tml
ij c†mσiclσj + U

∑

mσi

nmσinm−σi

+ U ′
∑

mlσi
m #=l

nmσinl−σi + (U ′ − J)
∑

mlσi
m #=l

nmσinlσi

+
∑

ml

gml

∑

σi

c†mσiclσi(b
†
i + bi) + ω0

∑

i

b†i bi

+ (DC − µ)
∑

mσi

nmσi, (1)

where c†mσi (cmσi) creates (annihilates) an electron on the lat-

tice site i with spin σ in the orbital m, nmσi = c†mσicmσi is
the spin and orbital resolved local density, the electrons are
interacting through the U , U ′, and J Hubbard and Hund pa-
rameters, and coupled to a local phonon of frequency ω0 via
the non-diagonal gml electron-phonon matrix. In this case,
the double counting correction (DC) is just a redefinition of
the chemical potential shift µ.

Downfolding to 3-band Hubbard Hamiltonian  
written in the Wannier molecular orbital basis (LUMO, LUMO+1, LUMO+2)  

U=0.68 eV       U’=0.63 eV       J=0.10 eV 
derived by c-RPA with basis rotation from maximally localized Wannier 
functions (Nomura, Nakamura, Arita, PRB 85, 155452 (2012)) 
 
c-RPA static limit values + bandwidth renormalization due to dynamic U 
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TABLE II. λAD corresponding to the integrated α2F functions
plotted in Fig. 7. Row order corresponds to the label sequence of
the figure. The phonon frequency logarithmic average ωAD

log is also
reported.

ωAD
log

Model λAD (meV)
Crystal local el-phon with crystal intraphonons 0.20 93
Molecular el-phon with crystal intraphonons 0.78 96
Crystal local el-phon with molecular phonons 0.15 110
Molecular el-phon with molecular phonons 0.57 125

formula43 for λ and make the comparison with previous works
(which mainly used the adiabatic approximation). The results
are plotted in Fig. 7 and reported in Table II. By comparing
panels (a) and (b), it turns out that the total coupling λ with the
screened deformation potential is about 4 times weaker, which
implies that on average the electron-phonon matrix elements
gν

kn,k+qm are twice smaller than the “bare” ones of the isolated
neutral molecule.

Therefore, we reach our second main conclusion of this
work. Describing correctly the effect of the metallic screening
provided by the crystal environment to the deformation
potential is critical to get the right estimate of the electron-
phonon coupling.

Now, let us analyze in detail the effect of the metallic
crystal environment on the dynamical matrix, and so on the
phonons. In Eq. (13), we replace the phonon eigenvalues
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FIG. 7. Eliashberg function α2F and the adiabatic λAD computed
via Eq. (13) for both crystal local d [panels (a) and (c)] and purely
molecular dMOL [panels (b) and (d)]. In the formula, we used either
the intramolecular projected phonons eqν [panels (a) and (b)] or the
purely molecular dynamical matrix [panels (c) and (d)]. Note that the
y-axis scale of the left panels is 4 times wider than the scale on the
right panels to show that the magnitude of the local d (averaged over
the phonon momenta q and the phonon modes ν) is about 4 times
smaller than the magnitude of dMOL (averaged over the molecular
phonon modes ν).

ωqν and eigenvectors eqν with the corresponding molecular
ωMOL

ν and eMOL
ν , computed for the isolated undoped picene

molecule. The results are reported in Figs. 7(c) and 7(d). If
compared to panels (a) and (b), there is a global frequency
softening of 50 cm−1 for the in-plane phonons in the crystal
induced by the doping. The second effect is a remodulation
of the frequency dependence of the electron-phonon coupling
strength. In the α2F (ω) obtained with molecular phonons, the
coupling is mostly peaked around 1600 cm−1, while it is much
more broadly distributed in the crystal phonons.

From this analysis we can conclude that upon doping the
metallic environment provided by the crystal strongly affects
both the deformation potential and the dynamical matrix.
The metallic screening reduces the electron-phonon coupling
strength, while it softens the phonon modes and makes their
coupling to the charge broader in the phonon frequency.

The α2F (ω) plotted in Fig. 7(d) for molecular phonons
and molecular δV MOL

SCF
δus,0

closely resembles the one published in
Ref. 15, where the deformation potential and the dynamical
matrix have been computed for the undoped insulating picene
crystal in the rigid doping approximation. Thus, the effect of
the metallic screening from partially filled bands has been
neglected in both the deformation potential and the dynamical
matrix. The value of ωAD

log corresponding to the Eliashberg
function of Fig. 7(d) is 125 meV, very close to the value
reported in Ref. 15 (126 meV). This is a further indication
that erroneous results can be obtained for doped picene if the
metallic screening is not included in the calculations.

A. Technical details for the molecular
electron-phonon calculations

The molecular DFT calculations have been carried out with
the PW basis set in the same supercell as the one of the K3
picene, where only one of the two molecules per crystal unit
cell has been taken. We checked that the K3 picene supercell is
large enough to get the same molecular levels as the ones
of a much larger supercell, and thus the boundary effects
are negligible. We left the atomic positions of the molecule
unchanged from the crystal, in such a way that the deformation
potential calculated for the molecule could directly replace
the one for the crystal in gν

kn,k+qm of Eqs. (12) and (13)
without any particular rotation in the coordinate space. The
DFT calculation of the molecule was performed in its neutral
state, at the & point. The electron-phonon calculations were
performed at q = ( 1

2 , 1
2 , 1

2 ) (in crystal fractional coordinates)
to avoid the effective charge contributions to the deformation
potential, which results in the Fröhlich Hamiltonian44 and
diverges for zone-center optical phonons.

VI. IMPACT OF DIMENSIONALITY ON NONLOCAL
ELECTRON-PHONON COUPLINGS

In this section we want to go beyond the distinction between
intramolecular local and intermolecular nonlocal couplings,
and analyze what are the most important electron-phonon
interactions among the nonlocal contributions. We keep a
“direct space” approach in labeling the various terms by
exploiting the local picture provided by the molecular MLWFs.
In other words, we aim at finding the minimal electron-phonon
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MLWF basis such that the local Htb = −t
αβ
ii is diagonal. This

corresponds to working with molecular orbitals (MOs) which
are close to the MOs of an isolated molecule, as explained in
Ref. [22].

The local EE interaction in Eq. (5) is justified by the
molecular nature of the crystal, with the on-site repulsion
larger than any other energy scale. The values of the full local
interaction matrix have been computed in Ref. [23] by the
constrained-random-phase approximation (cRPA) method in
the two-orbital MLWF basis. We obtain the corresponding
interaction in the MO basis by rotation, which gives U =
0.68 eV, U ′ = 0.63 eV, and J = 0.10 eV. We extend these
values to the three-MO model of Eq. (5), by assuming that they
are insensitive to the MO type, and by neglecting descreening
due to the LUMO + 2 channel. However, this is a minor
effect compared to the large screening coming from the full
frequency dependence of U (ω), which goes up to 4.4 eV in
the unscreened (ω → ∞) limit (Ubare). In Ref. [2], it was
proven that the correct low-energy model which includes the
high-energy screening processes is the Hamiltonian with the
U (ω = 0) static interaction and the bandwidth t renormalized
by the factor ZB = exp(1/π

∫ ∞
0 dωImU (ω)/ω2). We estimate

ZB from the experimental loss function (Im[−1/ε(ω)]) of K3
picene, which has been measured up to 40 eV by electron
energy-loss spectroscopy [24]. By neglecting the crystal
momentum dependence of the full dielectric function, we can
obtain an estimate of the imaginary part of the retarded U
as ImU (ω) ≈ UbareIm[−1/ε(ω)]. Using a low-energy cutoff
corresponding to the MOs included in the model, all hoppings
in Eq. (5) are renormalized by ZB = 0.76.

2. Electron-phonon interactions

To make the many-body calculations feasible, we
parametrize the phonon branches ωqν (q is the phonon mo-
mentum and ν is the phonon mode) by a single monochromatic
local phonon. The presence of the explicit EE interaction in the
Hamiltonian of Eq. (5) implies that the phonon propagator of
the model has to be descreened not only by the EP interactions,
as treated in Sec. II, but also by the EE interactions. Therefore,
δV has to be replaced by δV bare. Indeed, the g matrix is now
screened by both EE and EP processes within the low-energy
manifold. To undress the system from EE screening involving
LUMO + n states and obtain the bare EP couplings, one can
adopt a method recently proposed in Ref. [4], which is based
on the same cRPA theory used to screen the Hubbard and
Hund parameters, described in the section above. Here, we take
another route, and perform an LDA DFPT calculation [19,25]
of a neutral isolated molecule taken in the same geometry as the
one stabilized by the crystal, assuming δV bare

αβ ≈ δV mol
αβ . In the

neutral molecule we naturally disregard the dopant electrons.
The system is an insulator, with a large highest occupied
molecular orbital (HOMO)-LUMO gap. Therefore, the δV mol

αβ

couplings are not affected by the metallic screening coming
from the low-energy bands, generated by the LUMO + n
states. The EP couplings calculated in this way are thus local
and “bare.”

We take the molecular phonon with the largest |gbare| as
the representative of the total EP coupling. The molecular
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(b)

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

0  0.5 1  1.5 2  2.5 3

ωbare (eV)
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FIG. 1. (Color online) Mean-field solution of Eqs. (3) as a func-
tion of the deformation potential δV , taken with respect to the ab
initio molecular value δVmol. The geometry is constrained to the
crystal relaxed DFT solution, and the dressed frequency is set to the
crystal DFT ωdressed = 0.173 eV, yielding (a) ωbare and (b) x0.

phonon frequency of the most coupled mode is 0.193 eV, and
its corresponding phonon frequency in the crystal is ωdressed =
0.173 eV (from LDA-DFPT calculations of the crystal). By
plugging ωdressed, δV mol

αβ (from LDA-DFPT calculations of
the molecule), and the crystal LDA bands Htb in Eq. (2)
and solving the related Eqs. (3) at the mean-field level, we
get ωbare = 0.277 eV as a solution (see Fig. 1), and the
corresponding gbare

αβ (in eV):




0.066 −0.010 −0.002

−0.010 −0.038 −0.051
−0.002 −0.051 −0.018



 . (6)

Note that g has sizable interorbital matrix elements, of the same
magnitude as the diagonal ones. In the following, we study
the dependence of the solution on the EP coupling strength
by taking into account three sets of gbare

αβ , corresponding to
the DFPT value δV mol

αβ , and to the larger values 2δV mol
αβ and

3δV mol
αβ .

B. Methods

In order to solve the Hamiltonian in Eq. (5) with the above
parameters, we use dynamical mean-field theory (DMFT) [26].
The DMFT equations are solved with an exact-diagonalization
(ED) impurity solver [27], and some of the results are
cross-checked using a continuous time quantum Monte Carlo
(CTQMC) solver [28]. DMFT maps the Hubbard-Holstein
lattice problem (5) onto an Anderson-Holstein impurity model
(AHIM) [29] with a self-consistently defined bath. We solve
this model by performing standard calculations with the
number of bath levels set to 9, but we also benchmark our
results against calculations with 12 bath levels.

The three-orbital impurity has a local noninteracting
Hamiltonian with EP-DC correction, hαβ = (Eα − µ)δαβ +√

2x0gbare
αβ , hybridized through Vlα with Nbath bath levels of

energy εl , and coupled to an on-site harmonic oscillator. cασ

denotes the annihilation operator for the impurity level α with
spin σ , blσ the operator for the lth level in the bath, and a the
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MLWF basis such that the local Htb = −t
αβ
ii is diagonal. This

corresponds to working with molecular orbitals (MOs) which
are close to the MOs of an isolated molecule, as explained in
Ref. [22].

The local EE interaction in Eq. (5) is justified by the
molecular nature of the crystal, with the on-site repulsion
larger than any other energy scale. The values of the full local
interaction matrix have been computed in Ref. [23] by the
constrained-random-phase approximation (cRPA) method in
the two-orbital MLWF basis. We obtain the corresponding
interaction in the MO basis by rotation, which gives U =
0.68 eV, U ′ = 0.63 eV, and J = 0.10 eV. We extend these
values to the three-MO model of Eq. (5), by assuming that they
are insensitive to the MO type, and by neglecting descreening
due to the LUMO + 2 channel. However, this is a minor
effect compared to the large screening coming from the full
frequency dependence of U (ω), which goes up to 4.4 eV in
the unscreened (ω → ∞) limit (Ubare). In Ref. [2], it was
proven that the correct low-energy model which includes the
high-energy screening processes is the Hamiltonian with the
U (ω = 0) static interaction and the bandwidth t renormalized
by the factor ZB = exp(1/π

∫ ∞
0 dωImU (ω)/ω2). We estimate

ZB from the experimental loss function (Im[−1/ε(ω)]) of K3
picene, which has been measured up to 40 eV by electron
energy-loss spectroscopy [24]. By neglecting the crystal
momentum dependence of the full dielectric function, we can
obtain an estimate of the imaginary part of the retarded U
as ImU (ω) ≈ UbareIm[−1/ε(ω)]. Using a low-energy cutoff
corresponding to the MOs included in the model, all hoppings
in Eq. (5) are renormalized by ZB = 0.76.

2. Electron-phonon interactions

To make the many-body calculations feasible, we
parametrize the phonon branches ωqν (q is the phonon mo-
mentum and ν is the phonon mode) by a single monochromatic
local phonon. The presence of the explicit EE interaction in the
Hamiltonian of Eq. (5) implies that the phonon propagator of
the model has to be descreened not only by the EP interactions,
as treated in Sec. II, but also by the EE interactions. Therefore,
δV has to be replaced by δV bare. Indeed, the g matrix is now
screened by both EE and EP processes within the low-energy
manifold. To undress the system from EE screening involving
LUMO + n states and obtain the bare EP couplings, one can
adopt a method recently proposed in Ref. [4], which is based
on the same cRPA theory used to screen the Hubbard and
Hund parameters, described in the section above. Here, we take
another route, and perform an LDA DFPT calculation [19,25]
of a neutral isolated molecule taken in the same geometry as the
one stabilized by the crystal, assuming δV bare

αβ ≈ δV mol
αβ . In the

neutral molecule we naturally disregard the dopant electrons.
The system is an insulator, with a large highest occupied
molecular orbital (HOMO)-LUMO gap. Therefore, the δV mol

αβ

couplings are not affected by the metallic screening coming
from the low-energy bands, generated by the LUMO + n
states. The EP couplings calculated in this way are thus local
and “bare.”

We take the molecular phonon with the largest |gbare| as
the representative of the total EP coupling. The molecular
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FIG. 1. (Color online) Mean-field solution of Eqs. (3) as a func-
tion of the deformation potential δV , taken with respect to the ab
initio molecular value δVmol. The geometry is constrained to the
crystal relaxed DFT solution, and the dressed frequency is set to the
crystal DFT ωdressed = 0.173 eV, yielding (a) ωbare and (b) x0.

phonon frequency of the most coupled mode is 0.193 eV, and
its corresponding phonon frequency in the crystal is ωdressed =
0.173 eV (from LDA-DFPT calculations of the crystal). By
plugging ωdressed, δV mol

αβ (from LDA-DFPT calculations of
the molecule), and the crystal LDA bands Htb in Eq. (2)
and solving the related Eqs. (3) at the mean-field level, we
get ωbare = 0.277 eV as a solution (see Fig. 1), and the
corresponding gbare

αβ (in eV):




0.066 −0.010 −0.002

−0.010 −0.038 −0.051
−0.002 −0.051 −0.018



 . (6)

Note that g has sizable interorbital matrix elements, of the same
magnitude as the diagonal ones. In the following, we study
the dependence of the solution on the EP coupling strength
by taking into account three sets of gbare

αβ , corresponding to
the DFPT value δV mol

αβ , and to the larger values 2δV mol
αβ and

3δV mol
αβ .

B. Methods

In order to solve the Hamiltonian in Eq. (5) with the above
parameters, we use dynamical mean-field theory (DMFT) [26].
The DMFT equations are solved with an exact-diagonalization
(ED) impurity solver [27], and some of the results are
cross-checked using a continuous time quantum Monte Carlo
(CTQMC) solver [28]. DMFT maps the Hubbard-Holstein
lattice problem (5) onto an Anderson-Holstein impurity model
(AHIM) [29] with a self-consistently defined bath. We solve
this model by performing standard calculations with the
number of bath levels set to 9, but we also benchmark our
results against calculations with 12 bath levels.

The three-orbital impurity has a local noninteracting
Hamiltonian with EP-DC correction, hαβ = (Eα − µ)δαβ +√

2x0gbare
αβ , hybridized through Vlα with Nbath bath levels of

energy εl , and coupled to an on-site harmonic oscillator. cασ

denotes the annihilation operator for the impurity level α with
spin σ , blσ the operator for the lth level in the bath, and a the
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FIG. 3. (Color online) (a) T = 0 ED/DMFT spectral functions
including both EE and EP interactions without EP-DC correction.
(b) Same as (a), but with the EP-DC correction.

by the bare EP coupling is counterbalanced by the EP-DC
correction, which constrains the model to have the correct ab
initio DFT geometry when it is solved at the mean-field level.
The ωbare and x0 fixed by that constraint are plotted in Fig. 1, as
a function of δV . We find that ωbare increases linearly with δV ,
while x0 saturates after a first linear growth. The ED/DMFT
spectrum of the model with EP-DC correction is shown in
Fig. 3(b). The effect of phonons is much less dramatic. The
spectrum and electron populations remain close to the results
in the absence of EP coupling, while the phonon population
stays peaked at the lowest phonon state (Table I), signaling
that with the EP-DC correction the EE correlation alone is not
able to deform the DFT geometry.

IV. CONCLUSIONS

In conclusion, we have shown the importance of including
the EP double-counting correction to model the EP coupling
from ab initio DFT results or experimental data. K3 picene is
an ideal test case for our theory, as in molecular crystals the
bandwidth, the local EP coupling, and the local EE repulsions
live on the same energy scale, and the properties result from
a subtle competition between them. Therefore, theoretical
predictions are extremely sensitive to the quality of the model.

Using the LDA + DMFT approach, we found that K3 picene
is a Mott insulator, but close to a metallic instability. The local
Hubbard repulsion opens a small gap of ≈0.2 eV, while local
Holstein phonons, whose coupling has been estimated from
ab initio molecular calculations, do not affect the electronic
structure when the EP-DC correction is added. The Mott
state found by solving our model is not compatible with

a superconducting behavior, whereas it is in agreement
with valence-band photoemission spectroscopy performed on
picene multilayer samples and reported in Ref. [17], where
a small gap has indeed been found. More work is necessary,
both theoretical and experimental, to assess the conducting
properties of K-doped picene, particularly in relation to the
molecular arrangement of the crystal once the intercalation
is performed. From the point of view of synthesizing a new
superconducting material, the closeness of the Mott state
to a metallic transition is a rather good sign. Indeed, our
calculations, done on a more refined model than the one in
Ref. [16], give a gap which is only half as wide, and show
that a molecular deformation driven by a large EP coupling
would be able to further reduce the gap. The closeness to
a Mott transition, but on the metallic side, would favor the
superconductivity by a phonon mechanism with coupling
enhanced by correlations [6]. However, a better understanding
of the experimental conditions is necessary, to make the
intercalation effective in order to synthesize a clean conducting
crystal, as already mentioned in the introduction.

The main result of our paper is very general, and goes well
beyond the particular application to K3 picene. We showed that
a DC electron-phonon term is necessary to derive the proper
couplings of an electron-phonon Hamiltonian from a system
computed or measured at rest. Indeed, one must avoid double
counting relaxation effects, in such a way that the relaxed
geometry and measured phonon frequencies are obtained by
the Hamiltonian solution, after dressing it by low-energy
electron processes. The double-counting term presented in our
paper corrects the Hamiltonian for these effects, by taking
into account the modification of the phonon propagator due to
electron-phonon low-energy interactions.

Our application to K3 picene shows that this EP-DC
correction can lead to sizable effects. Indeed, the results
are qualitatively modified by the EP-DC correction, which
calls for a critical reanalysis of the theoretical work done
so far on EP models for molecular crystals. Finally, our
EP parametrization is not restricted to the specific case of
generalized Hubbard-Holstein models and can be applied also
to more general EP Hamiltonians.
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operator for a local phonon of frequency ωbare:

HAHIM =
∑

αβσ

hαβc†ασ cβσ + U
∑

ασ

nασnα−σ

+ U ′
∑

αβσ
α #=β

nασ nβ−σ + (U ′ − J )
∑

αβσ
α #=β

nασnβσ

+
∑

lσ

εlb
†
lσblσ +

∑

lασ

Vlα(c†ασ blσ + H.c.)

+
∑

αβσ

gαβc†ασ cβσ (a† + a) + ωbarea
†a. (7)

Then the dynamical Weiss field which describes the hybridiza-
tion with the bath is G0

−1
αβ , which can be defined as

G0
−1
αβ (iωn) = iωn − hαβ −

Nbath∑

l=1

V ∗
lαVlβ

iωn − εl

. (8)

Note that the Weiss field Eq. (8) has off-diagonal compo-
nents in the orbital basis. Correspondingly, we have to compute
all the elements of the impurity Green’s function matrix
Gαβ , and the self-energy &αβ will also have off-diagonal
components. The local lattice Green’s function is G

αβ
loc(iωn) =

1/Nk

∑
k(iωn + µ − H DFT

αβ (k) − &αβ)−1, where the sum runs
over the Brillouin zone and H DFT

αβ (k) is the Fourier transform
of the DFT-LDA noninteracting Hamiltonian including the
EP-DC correction (Htb +

∑
αβσ i

√
2x0gbare

αβ c
†
ασ icβσ i).

By equating Gαβ to G
αβ
loc we can obtain a new Weiss field

which is then fitted to Eq. (8) and determines the new set of
parameters Vlα and εl . The above procedure is iterated until
convergence is reached.

Since nondiagonal EP terms cannot be treated with the
Monte Carlo technique of Ref. [30], we restrict the CTQMC
calculations to the model without EP coupling. In the MO basis
it turns out that the sign problem is negligible, even though the
off-diagonal hybridizations are relatively large.

C. Results

By taking the electronic part of our Hamiltonian (5)
only, we find K3 picene to be a Mott insulator: the LUMO
(LUMO + 2) orbital is completely filled (empty) while the
orbital LUMO + 1 is half-filled and has well-pronounced
Hubbard bands hybridized with the LUMO and LUMO + 2
orbitals (see Fig. 2). This insulating state is consistent with
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ω  (eV)

LUMO
LUMO+1
LUMO+2

−1 −0.5 0  0.5 1
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A
(ω

)

ω  (eV)

FIG. 2. (Color online) Paramagnetic spectral functions obtained
by (a) ED and (b) CTQMC without phonons at T = 0 eV (ED) and
0.01 eV (CTQMC).

TABLE I. MO occupations from the ED/DMFT solution of
Eq. (5). Results are reported for a system with and without EP-DC
terms, for different EP couplings. The purely electronic case (δV = 0)
is also shown. The rightmost column is the most populated phonon
level, Nmax

ph .

LUMO LUMO + 1 LUMO + 2 Nmax
ph

δV = 0 1.00 0.50 0.00

Without EP-DC correction (ωbare = 0.193 eV, x0 = 0)
δV = δVmol 1.00 0.45 0.05 1
δV = 2δVmol 1.00 0.29 0.21 3
δV = 3δVmol 1.00 0.25 0.25 9

With EP-DC correction (ωbare and x0 from Fig. 1)
δV = δVmol 0.99 0.50 0.01 0
δV = 2δVmol 0.98 0.50 0.02 0
δV = 3δVmol 0.94 0.53 0.03 0

the result of previous DMFT calculations (in which a much
larger U was used) [16]. However, in our case the Mott gap
is significantly smaller (gap half-width of ≈0.2 eV) and the
system is quite close to the Mott transition. The results obtained
using the ED and CTQMC solvers are consistent, confirming
the reliability of both approaches and the limited impact of the
ED truncation.

The discrepancy between the Mott-insulating behavior of
K3 picene found here and the recent reports of superconducting
signatures may suggest an important role of EP interactions
in stabilizing the superconducting phase. We thus add in
our ED/DMFT scheme the Holstein-type gαβ terms. We first
discuss the results without EP-DC correction. In this case
the effect of the EP interaction on the electronic structure
is remarkable. Table I lists the MO occupations found in the
ED/DMFT solution of Eq. (5) with EP coupling strengths
of different magnitude. The coupling with phonons moves the
LUMO + 1 orbital away from half filling, and induces a strong
hybridization between the LUMO + 1 and LUMO + 2 orbitals.

For δV = 3δVmol both LUMO + 1 and LUMO + 2 are 1/4
filled, and the system is at the edge of an insulator-to-metal
transition driven by the EP coupling (although still on the
insulating side). To understand the origin of this effect, we
analyze the phonon population distribution. For this large value
of the coupling, it features a broad maximum centered around
nine excited phonons, a Frank-Condon behavior related to a
finite molecular deformation. The system geometry changes
as the EP coupling increases, by pulling the minimum away
from the original center of the phonon oscillators. This is
clear from the last column of Table I, where the phonon
peak shifts to higher levels as the coupling gets stronger. The
phonon displacement has several consequences: it mixes the
unperturbed MO’s states already at the molecular on-site level
and shifts the bands leading to a more asymmetric structure and
to the observed occupations [see Fig. 3(a)]. These effects are
mainly a consequence of the off-diagonal EP couplings which
transfer electrons between orbitals. These terms are resilient to
the Hubbard interaction as opposed to the density terms which
are quenched by strong correlations [31,32].

The result changes both qualitatively and quantitatively
when the EP-DC correction is added. The deformation driven
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Conclusions	
  

•  Electron-­‐phonon	
  interac7on	
  ac7ng	
  on	
  low-­‐
energy	
  electrons	
  has	
  a	
  strong	
  effect	
  on	
  the	
  
renormalized	
  parameters	
  (geometry,	
  phonon	
  
frequency,	
  electron-­‐phonon	
  vertex)	
  

•  Results	
  extremely	
  sensi7ve	
  to	
  the	
  electron-­‐
phonon	
  double	
  coun7ng	
  correc7on	
  	
  

•  Effects	
  of	
  electron-­‐phonon	
  undressing	
  largely	
  
unexplored	
  in	
  realis7c	
  electron-­‐phonon	
  models	
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