

Coupling of a high-energy excitation to superconducting quasiparticles in a high-T_c cuprate from coherent charge fluctuation spectroscopy

Barbara Mansart, J. Lorenzana³, A. Mann¹, E. Baldini^{1,2}, A. Odeh², M. Scarongella², M. Chergui²

¹ Laboratory for Ultrafast Microscopy and Electron Scattering, ICMP, EPFL, CH-1015 Lausanne, Switzerland
² Laboratory of Ultrafast Spectroscopy, ISIC, EPFL, CH-1015 Lausanne, Switzerland
³ ISC-CNR and Dipartimento di Fisica, Università di Roma La Sapienza, P.le Aldo Moro, I-00185 Roma, Italy

Pairing interactions in high-T_c cuprates

What is the glue (if any) maintaining electrons of Cooper pairs together?

Low-energy theories (Eliashberg formalism)

High-energy theories

Pairing interactions in high-T_c cuprates

Low-energy theories (Eliashberg formalism) $H_{BCS} = \sum_{\mathbf{k},\sigma} \xi_k c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} - \frac{V}{2\Omega} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q},\sigma\sigma'} c_{\mathbf{k}+\mathbf{q},\sigma}^{\dagger} c_{\mathbf{k},\sigma} c_{\mathbf{k}',\mathbf{q},\sigma'}^{\dagger} c_{\mathbf{k}',\mathbf{q},\sigma'} c_{\mathbf{k}',\sigma'}$ $\Psi = \prod_{\mathbf{k}} (u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{k}\downarrow}^{\dagger}) \left| 0 \right\rangle$ Electrons bind in Cooper pairs through attractive effective potential V>0 **BCS:** phonons Cuprates: spin fluctuations (?) Energy scale: meV Time-scale: picosecond **RETARDED INTERACTIONS**

Scalapino et al., PRB 34 (1986)

High-energy theories

$$H_{t-J} = P \sum_{\mathbf{k},\sigma} \xi_k c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} P + J \sum_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j \qquad J \propto t^2 / U$$
$$P\Psi = P \prod_{\mathbf{k}} (u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}) |0\rangle \qquad P = \prod_i (1 - n_i\uparrow n_i\downarrow)$$

Formation of a Resonating-Valence-Bonds liquid of Cooper pairs due to strong electronic correlations

0

Energy scale: U: eV $r = \frac{|t_r t_{r'} \rangle - |t_r t_{r'} \rangle}{\sqrt{2}}$ Time-scale: sub-femtosecond

NON-RETARDED INTERACTIONS

Anderson, Science 235 (1987)

Determination of the pairing mechanism: study of the energy-scale and/or the time-scale of the pairing interactions

Experimental setup: broadband pump-probe reflectivity

B. Mansart et al, PNAS 109 (2012)

Static optical properties of La_{2-x}Sr_xCuO₄, x=0.15

Lorenzana et al., PRL 90 (2003)

- Static optical properties isotropic in (a,b) plane
- Broadband measurements: access to the relation between high-energy excitations and superconducting condensate

Effect of laser excitation

Coherent generation of elementary excitations: charge fluctuations

Effect of laser excitation in a superconductor

 $H = H_{BCS} + H_R$

Bogoliubon: superposition of an e^{-} excitation and a hole-excitation in a SC

Excited state wavefunction

$$\Psi(t)\rangle = |BCS\rangle + \sum_{k} \epsilon_{k} e^{-i2E_{k}t} \gamma_{k\uparrow}^{+} \gamma_{-k\downarrow}^{+} |BCS\rangle$$
$$E_{k} = \sqrt{(\epsilon_{k} - \mu)^{2} + |\Delta_{k}|^{2}}$$

Pump: Prepare the system on a wave function that is the SC GS + a given charge-fluctuation

Describe the GS with PS formalism, the fluctuations induce precession of the PS.

$$H_{BCS} = -2\sum_{k}^{\mathsf{Ekin}} \xi_k \sigma_k^z - \sum_{k,k'}^{\mathsf{CP}} (\sigma_k^x \sigma_{k'}^x + \sigma_k^y \sigma_{k'}^y) + cste \qquad \begin{cases} \sigma_k^x = \frac{1}{2}(b_k^\dagger + b_k) \\ \sigma_k^y = \frac{1}{2}i(b_k^\dagger - b_k) \end{cases} \begin{cases} b_k = c_{-k\downarrow}c_{k\uparrow} & \text{Anderson,} \\ b_k^\dagger = c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger & \text{Hys. Rev.} \\ 112 (1958) \end{cases}$$

BCS Hamiltonian -> ferromagnetism problem

BCS Hamiltonian —>ferromagnetism problem

Pump effect \rightarrow time-dependent impulsive potential \rightarrow fictitious magnetic field δb_k which makes the pseudospins precessing

 $\hbar \frac{\partial \boldsymbol{\sigma}_{\mathbf{k}}}{\partial t} = -2[\mathbf{b}_{\mathbf{k}}^{0} + \delta \mathbf{b}_{\mathbf{k}}(t)] \times \boldsymbol{\sigma}_{\mathbf{k}}. \qquad \text{PS motion} \quad 2|\mathbf{b}_{\mathbf{k}}^{0}|/\hbar, \ |\mathbf{b}_{\mathbf{k}}^{0}| = \sqrt{\xi_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}} \quad \text{Angular freq.}$

Effect of laser excitation in a superconductor

B. Mansart, et al. PNAS **110** 4539 (2013).

Transient A_{1g}+B_{2g} response

 $E_{pump}//(110), E_{probe}//(110), k//001$ F ~ 300 µJ/cm²

A_{1g}+B_{2g} Raman excitation

The signal changes sign as a function of wavelength

4000

B. Mansart, et al.

PNAS 110 4539 (2013).

Transient A_{1g}+B_{2g} response

 $E_{pump}//(110), E_{probe}//(110), k//001$ F ~ 300 µJ/cm²

 $A_{1g}+B_{2g}$ Raman excitation

The signal changes sign as a function of wavelength

The coherent oscillations vanish above T_c

Transient A_{1g}+B_{1g} response

 $E_{pump}//(100), E_{probe}//(100), k//001$ F ~ 300 µJ/cm²

 $A_{1g}+B_{1g}$ Raman excitation

The signal changes sign as a function of wavelength

The coherent oscillations vanish above T_c

Generating and probing coherent superconducting condensate oscillations

Ultrafast experiments compared to static Raman scattering

B. Mansart, et al. PNAS **110** 4539 (2013).

Generating and probing coherent superconducting condensate oscillations

Ultrafast experiments compared to static Raman scattering

B. Mansart, et al. PNAS **110** 4539 (2013).

Generating and probing coherent superconducting condensate oscillations

B. Mansart, et al. PNAS **110** 4539 (2013).

Coherent Charge Fluctuations: pseudospins description

Trieste, October 2014

Superconducting condensate oscillations energy scale

Probe-energy dependence of B_{2g} fluctuation in frequency-domain

Clear resonance at 2.6 eV Charge-transfer energy of the parent compound

Evidence for non-retarded contribution to the pairing mechanism

> B. Mansart, et al. PNAS **110** 4539 (2013).

Conclusion

- Evidence for instantaneous pair-breaking by charge-transfer excitation
- New technique, Coherent Charge Fluctuation Spectroscopy, which has a high degree of specificity (similar to the isotope effect for BCS systems)
- Evidence for non-retarded (high energy) contribution to the pairing mechanism (Anderson scenario)
- Polarization, spectroscopy and time resolution are mandatory

B. Mansart, et al. PNAS **110** 4539 (2013).

Broken symmetry and collective modes

 Below Tc (100K/250GeV) amplitude and phase fluctuations lead to welldefined collective excitations

Phase and amplitude fluctuations are decoupled

massive: $\omega^2 = m^2 + (v_s q)^2$

Goldstone

For a neutral superconductor massless: $\omega = v_s q$

Adapted from a slide by Lara Benfatto

Anderson-Higgs mechanism

In a superconductor:

D. Van der Marel

Journal of Superconductivity: Incorporating Novel Magnetism, Vol. 17, No. 5, October 2004 (© 2004)

Condensed Matter vs High Energy Physics

Amplitude mode Bogoliubov mode Anderson mechanism plasmon Neutral phase oscillations Higgs Boson Nambu-Goldstone Higgs-mechanism (phase and amplitude coupled) W particle Z particle mediate the weak interaction

A_{1g} Bogoliubov or Nanbu-Goldstone mode made massive by Anderson-Higgs

B₁₉ Mode

How to excite the Higgs mode?

A transient change in the pairing interaction may excite the amplitude mode.

Also pumping in the gap region in a dirty superconductor may excite the Higgs in a similar way to a Raman process.

$$H=\chi^{\prime}(\omega) \to \Delta$$

Higgs mechanism and TH spectroscopy

The condensate SW changes have a direct impact on the spectrum at 2Δ

It was such a good idea.....

B. Mansart, et al. PNAS **110** 4539 (2013).

Arxiv 2011.....

Matsunaga et al., Science, 2014

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Higgs mechanism and visible light spectroscopy

In BCS dirty limit

In High Tcs

The superconducting condensate changes influence the SW at 2Δ AND at the CT energy

PHYSICAL REVIEW B 74. 024502 (2006) PHYSICAL REVIEW B 74, 064510 (2006)

Disentangling the origin of the condensate's coherent oscillations is not as straightforward as It seems......

Take-home messages

- Light excitation can excite coherent oscillations of the Cooper pairs condensate
- These oscillations resonate at the CT energy (High-energy scale, suggestive of RVB type of pairing mechanism)
- These oscillations may be driven by Higgs modes (under debate)

Acknowledgments

Dr. Barbara Mansart

Andreas Mann

Pr. Dr. José Lorenzana

Pr. Dr. Majed Chergui

Ahmad Odeh

Mariateresa Scarongella

