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to have a Raman response. Taking into account the extra time dependence in Eq. (1)
it is easy to see that in the presence of the incoming light with an electric field
oscillating at frequency ωL, due to beating, the current in Eq. (1) gets extra structure
in the frequency domain at ωS = ωL ± ωAph

1g
which results in photon emission at

those frequencies i.e. the Stokes and anti-Stokes Raman response. The Raman cross
section is thus related to the derivative of the optical conductivity [or the dielectric
susceptibility χ ≡ σ/(iω)] respect to the coordinate of the excitation.

Neglecting absorption the matter radiation Hamiltonian relevant for Raman scat-
tering can be obtained with the following heuristic argument. The energy stored in a
polarizable solid in an oscillatory field of frequency ω is,

HE = −1

2
E(t).χ(ω).E(t). (2)

Within the adiabatic approximation we can expand the susceptibility,

χ = χ0 +
∂χ

∂ξ
ξ.

The first term is related to elastic (Rayleigh) scattering so it can be neglected for
our discussion. Replacing classical displacements with operators we get the Raman
Hamiltonian from the second term,

HR(t) = −1

2
E(t).

∂χ(ωL)

∂ξ
.E(t)ξ̂ = −F (t)ξ̂ (3)

This formula makes sense for a time dependent electric field at frequency ωL >> ωα

as is the case for the typical laser light of a Raman experiment. The second form
emphasizes the fact that the effect of the time dependent electric field can be seen as
a force F (t) acting on the phonon coordinate. The total Hamiltonian to describe the
one-phonon Raman process is,

H = Hph +HR (4)

with the phonon Hamiltonian given by

Hph =
1

2
Π2 +

1

2
ω2
phξ

2,

and with Π = ξ̇ the conjugate momentum of ξ.
A detailed computation yields the differential Raman power cross section as[85]:

dσ

dΩdω
=

ω4
SV

2

(4π)2c4
|êS .

dχ

dξ
(ωL).êL|2〈ξ̂ξ̂†〉δ(ω − ωα), (5)

where ωL is the incoming photon frequency ωS is the scattered photon frequency, ω =
ωL−ωS is the Raman shift, ωα is the excitation frequency, V is the sample volume, êS
and êL are the polarization vectors of the outcoming and incoming light respectively
and ξ is a normal mode coordinate related in the case of a phononic excitation to the
destruction operator by b =

√
2ω0/!ξ so at zero temperature 〈ξξ†〉 = !/2ω0.

The above arguments can be generalized to the case of electronic Raman scattering
relevant for superconductors. Eq. (2) is expanded in terms of charge fluctuations and
as before we keep the term relevant for Raman scattering,

HR =
∑

X

vX(t)N̂X
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with

vX(t) = −1

2
E(t).

∂χ(ωL)

∂NX
.E(t). (6)

HereX = A1g, B1g, B2g, ... labels the basis functions of the irreducible representations
of the lattice group. The most relevant ones for our computations are,[49]

f
A1g

k =
1

2
[cos(kxa) + cos(kya)],

f
B1g

k =
1

2
[cos(kxa)− cos(kya)],

f
B2g

k = sin(kxa) sin(kya),

and we have defined the following charge operators,

N̂X =
∑

iσ

fX
k c†kσckσ,

where c†kσ (ckσ) are creation (destruction) operators for electrons.
Eq. (6) show that in this case the laser electric field acts as a time dependent

potential acting on charge excitations with different symmetries.
We are interested on low-energy charge fluctuations so in the adiabatic approxi-

mation ∂χ(ωL)/∂NX appearing in Eq. (6) can be evaluated by computing the charge
susceptibility in the presence of a Lagrange multiplier which puts the charge out of
equilibrium. NX ≡ 〈N̂X〉 refers to the expectation value in the out of equilibrium
wave-function.

The total Hamiltonian is given by,

H = HBCS +HR (7)

where in the simplest approximation the low-energy superconducting quasiparticles
are described by a reduced BCS Hamiltonian,

HBCS =
∑

k

ξknkσ −
∑

k

(∆∗
kc

†
−k↓c

†
k↑ + h.c.).

Here nkσ = c†kσckσ and ξk = εk − µ the band energy measured from the Fermi level,
∆k the superconducting order parameter.

In this case the Raman cross section is given by,[125]

dσ

dΩdω
=

ω4
SV

2

(4π)2c4

∑

α

|〈0|êS .ρ̂.êL|α〉|2δ(ω − ωα) (8)

with the Raman tensor,

ρ̂ =
∑

X

∂χ

∂NX
(ωL)N̂X . (9)

3 Transient Stimulated Raman scattering

The same Hamiltonians of the previous section Eq. (4), (7) can be used to describe
impulsive stimulated Raman scattering (ISRS). In this phenomena coherent oscil-
lation of a Raman excitation are generated by a pump pulse. The electric field is
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with

vX(t) = −1

2
E(t).

∂χ(ωL)

∂NX
.E(t). (6)

HereX = A1g, B1g, B2g, ... labels the basis functions of the irreducible representations
of the lattice group. The most relevant ones for our computations are,[49]

f
A1g

k =
1

2
[cos(kxa) + cos(kya)],

f
B1g

k =
1

2
[cos(kxa)− cos(kya)],

f
B2g

k = sin(kxa) sin(kya),

and we have defined the following charge operators,

N̂X =
∑

iσ

fX
k c†kσckσ,

where c†kσ (ckσ) are creation (destruction) operators for electrons.
Eq. (6) show that in this case the laser electric field acts as a time dependent

potential acting on charge excitations with different symmetries.
We are interested on low-energy charge fluctuations so in the adiabatic approxi-

mation ∂χ(ωL)/∂NX appearing in Eq. (6) can be evaluated by computing the charge
susceptibility in the presence of a Lagrange multiplier which puts the charge out of
equilibrium. NX ≡ 〈N̂X〉 refers to the expectation value in the out of equilibrium
wave-function.

The total Hamiltonian is given by,

H = HBCS +HR (7)

where in the simplest approximation the low-energy superconducting quasiparticles
are described by a reduced BCS Hamiltonian,

HBCS =
∑

k

ξknkσ −
∑

k

(∆∗
kc

†
−k↓c

†
k↑ + h.c.).

Here nkσ = c†kσckσ and ξk = εk − µ the band energy measured from the Fermi level,
∆k the superconducting order parameter.

In this case the Raman cross section is given by,[125]

dσ

dΩdω
=

ω4
SV

2

(4π)2c4

∑

α

|〈0|êS .ρ̂.êL|α〉|2δ(ω − ωα) (8)

with the Raman tensor,

ρ̂ =
∑

X

∂χ

∂NX
(ωL)N̂X . (9)

3 Transient Stimulated Raman scattering

The same Hamiltonians of the previous section Eq. (4), (7) can be used to describe
impulsive stimulated Raman scattering (ISRS). In this phenomena coherent oscil-
lation of a Raman excitation are generated by a pump pulse. The electric field is

+	
  	
  	
  	
  +	
  

Ek	
  



understand this analogy, it is useful to use Anderson’s pseudo-
spins formalism (28, 29).* The latter is based on the fact that
despite their obvious physical difference, from a mathematical
(or purely formal) point of view, magnetism and superconduc-
tivity are closely linked phenomena.
The BCS wave function of a generic superconductor reads

jΨi= ∏
k

!
uk + vkc†k↑c

†
−k↓

"
j0i; [1]

where the operator c†kσ creates an electron with spin σ and wave-
vector k and j0〉 represents the vacuum state. For each pair of
states (k↑, −k↓) the wave function is a quantummixture of the pair
being empty (with amplitude uk) and being fully occupied (with
amplitude vk). Anderson’s idea is illustrated pictorially in Fig. 1
and consists of representing the fully occupied pair (k↑, −k↓) by
a down pseudospin in momentum space (Fig. 1A) and the state in
which the pair is empty by an up pseudospin (Fig. 1B).* The
advantage of this representation is that the pseudospins behave
like traditional spin-1/2 operators, and the quantum mixture of
fully occupied and empty states in the BCS wave function is rep-
resented by a sidewise pseudospin (Fig. 1C).
In the normal state uk = 0 and vk is different from zero only for

states inside the Fermi surface, which corresponds to empty pairs
above the chemical potential (up pseudospins) and fully occu-
pied pairs below the chemical potential (down pseudospins),
leading to the pseudospin texture shown schematically in Fig.
1D, with a sharp interface at the Fermi surface. In the super-
conducting state, mixing of empty and fully occupied pairs, which
becomes maximum at the chemical potential, blurs the Fermi
surface, leading to the texture shown in Fig. 1E.
Coherent control of the pseudospins in a superconductor can

be achieved by an ad hoc prepared light pulse through a stimu-
lated Raman process that, as discussed in more detail below,
triggers the precession of the pseudospins around their equilib-
rium axis. This is analogous to NMR and ESR experiments in
which magnetic field pulses induce a precession of real spins
(30). The concept and schematics of this experiment are depicted
in Fig. 1 F and G. An infrared polarized femtosecond laser pulse
couples to charge fluctuations in a superconductor according to
Raman selection rules. The pump pulse impulsively perturbs the
system and induces the pseudospins’ precession, i.e., the oscil-
lations of the Cooper pair condensate. The optical spectra of the
system are then monitored in real time at different energies,
revealing the optical transitions that respond to the oscillating
condensate; this allows us to single out those excitations that can
potentially mediate electron–electron interactions impacting the
formation of Cooper pairs. This is of pivotal importance for
cuprates, because the applicability of conventional pairing the-
ories (31), based on retarded interactions between electrons
mediated by low-energy glue bosons, has been doubted (32, 33)
and a completely different framework has been proposed in-
volving nonretarded interactions associated with electronic high-
energy scales (34).
We performed such high-temporal-resolution (<50 fs) experi-

ments in two optimally doped (Tc = 40 K) La2−xSrxCuO4 (LSCO)
single crystals (x = 0.15) with different orientations (see SI Text
and ref. 35 for details). A polarized 1.55-eV laser pulse with
a duration of 45 fs and an absorbed fluence around 300 μJ/cm2

(unless otherwise stated) induces both dipole (linear in the
electric field) and Raman (quadratic in the electric field) allowed
excitations, the latter being the main focus of this work.

We chose different experimental geometries for exploiting the
Raman selection rules for excitation and detection to obtain
information on different final states (SI Text). In the first ge-
ometry, the pump electric field is parallel to the Cu-O bond,
giving access to Raman excitations with A1g + B1g symmetry,
whereas the probe-pulse electric field is directed toward the c
axis, allowing us to detect only A1g symmetry excitations. Then,
using the same pumping geometry, we probed the excited system
along [100] and [010], which respectively give access to A1g + B1g
and A1g − B1g excitations. Performing the difference between the
two orientations allows us to extract only B1g excitations. Finally,
we used the pumping and probing fields on the diagonal di-
rection giving access to A1g + B2g Raman excitations. The dy-
namics of all these excitations are then probed by broad-band
ultrafast reflectivity, for which overall time-energy dependence
is displayed in Fig. 2 A–C.
The transient reflectivity is dominated by a large abrupt am-

plitude change followed by a relaxation; this is a consequence of
high-energy particle-hole (p-h) excitations produced by the dipole
allowed absorption of the pump photons. Furthermore, in both
orientations the transient reflectivity changes sign throughout the

Fig. 1. Pseudopsin description of the coherent charge fluctuation spec-
troscopy experiment. (A) Angle ϕ along the Fermi surface (FS). A–C define
the pseudospin operators in momentum space: A pseudopsin down corre-
sponds to the pair of states (k↑, −k↓) being fully occupied (A), a pseudospin
up to the pair (k↑, −k↓) being empty (B), and a sideways pseudopsin to a
quantum superposition of the previous two (C). (D and E) Pseudospin pat-
tern in the normal state and in the case of an s-wave superconductor, re-
spectively. Rather than plotting the pseudospins as a function of momentum
k we make a change of coordinates and plot as a function of the Fermi
surface angle ϕ and the energy distance ξ of the state k from the chemical
potential μ. (F) Schematic view of an NMR/ESR experiment in which the spins
precess, inducing a magnetization oscillation. (G) Corresponding view for a
CCFS experiment, in which the pseudospins precess upon ultrafast excitation
and coherent charge fluctuation generation.

*The pseudospin operators are defined as σxk = ðck↑c−k↓ +h:c:Þ, iσyk = ðck↑c−k↓ −h:c:Þ, and
σzk = 1−nk↑ −n−k↓. Here nkσ = c†kσckσ and c†kσ (ckσ) are creation (annihilation) operators
for electrons.
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understand this analogy, it is useful to use Anderson’s pseudo-
spins formalism (28, 29).* The latter is based on the fact that
despite their obvious physical difference, from a mathematical
(or purely formal) point of view, magnetism and superconduc-
tivity are closely linked phenomena.
The BCS wave function of a generic superconductor reads

jΨi= ∏
k

!
uk + vkc†k↑c

†
−k↓

"
j0i; [1]

where the operator c†kσ creates an electron with spin σ and wave-
vector k and j0〉 represents the vacuum state. For each pair of
states (k↑, −k↓) the wave function is a quantummixture of the pair
being empty (with amplitude uk) and being fully occupied (with
amplitude vk). Anderson’s idea is illustrated pictorially in Fig. 1
and consists of representing the fully occupied pair (k↑, −k↓) by
a down pseudospin in momentum space (Fig. 1A) and the state in
which the pair is empty by an up pseudospin (Fig. 1B).* The
advantage of this representation is that the pseudospins behave
like traditional spin-1/2 operators, and the quantum mixture of
fully occupied and empty states in the BCS wave function is rep-
resented by a sidewise pseudospin (Fig. 1C).
In the normal state uk = 0 and vk is different from zero only for

states inside the Fermi surface, which corresponds to empty pairs
above the chemical potential (up pseudospins) and fully occu-
pied pairs below the chemical potential (down pseudospins),
leading to the pseudospin texture shown schematically in Fig.
1D, with a sharp interface at the Fermi surface. In the super-
conducting state, mixing of empty and fully occupied pairs, which
becomes maximum at the chemical potential, blurs the Fermi
surface, leading to the texture shown in Fig. 1E.
Coherent control of the pseudospins in a superconductor can

be achieved by an ad hoc prepared light pulse through a stimu-
lated Raman process that, as discussed in more detail below,
triggers the precession of the pseudospins around their equilib-
rium axis. This is analogous to NMR and ESR experiments in
which magnetic field pulses induce a precession of real spins
(30). The concept and schematics of this experiment are depicted
in Fig. 1 F and G. An infrared polarized femtosecond laser pulse
couples to charge fluctuations in a superconductor according to
Raman selection rules. The pump pulse impulsively perturbs the
system and induces the pseudospins’ precession, i.e., the oscil-
lations of the Cooper pair condensate. The optical spectra of the
system are then monitored in real time at different energies,
revealing the optical transitions that respond to the oscillating
condensate; this allows us to single out those excitations that can
potentially mediate electron–electron interactions impacting the
formation of Cooper pairs. This is of pivotal importance for
cuprates, because the applicability of conventional pairing the-
ories (31), based on retarded interactions between electrons
mediated by low-energy glue bosons, has been doubted (32, 33)
and a completely different framework has been proposed in-
volving nonretarded interactions associated with electronic high-
energy scales (34).
We performed such high-temporal-resolution (<50 fs) experi-

ments in two optimally doped (Tc = 40 K) La2−xSrxCuO4 (LSCO)
single crystals (x = 0.15) with different orientations (see SI Text
and ref. 35 for details). A polarized 1.55-eV laser pulse with
a duration of 45 fs and an absorbed fluence around 300 μJ/cm2

(unless otherwise stated) induces both dipole (linear in the
electric field) and Raman (quadratic in the electric field) allowed
excitations, the latter being the main focus of this work.

We chose different experimental geometries for exploiting the
Raman selection rules for excitation and detection to obtain
information on different final states (SI Text). In the first ge-
ometry, the pump electric field is parallel to the Cu-O bond,
giving access to Raman excitations with A1g + B1g symmetry,
whereas the probe-pulse electric field is directed toward the c
axis, allowing us to detect only A1g symmetry excitations. Then,
using the same pumping geometry, we probed the excited system
along [100] and [010], which respectively give access to A1g + B1g
and A1g − B1g excitations. Performing the difference between the
two orientations allows us to extract only B1g excitations. Finally,
we used the pumping and probing fields on the diagonal di-
rection giving access to A1g + B2g Raman excitations. The dy-
namics of all these excitations are then probed by broad-band
ultrafast reflectivity, for which overall time-energy dependence
is displayed in Fig. 2 A–C.
The transient reflectivity is dominated by a large abrupt am-

plitude change followed by a relaxation; this is a consequence of
high-energy particle-hole (p-h) excitations produced by the dipole
allowed absorption of the pump photons. Furthermore, in both
orientations the transient reflectivity changes sign throughout the

Fig. 1. Pseudopsin description of the coherent charge fluctuation spec-
troscopy experiment. (A) Angle ϕ along the Fermi surface (FS). A–C define
the pseudospin operators in momentum space: A pseudopsin down corre-
sponds to the pair of states (k↑, −k↓) being fully occupied (A), a pseudospin
up to the pair (k↑, −k↓) being empty (B), and a sideways pseudopsin to a
quantum superposition of the previous two (C). (D and E) Pseudospin pat-
tern in the normal state and in the case of an s-wave superconductor, re-
spectively. Rather than plotting the pseudospins as a function of momentum
k we make a change of coordinates and plot as a function of the Fermi
surface angle ϕ and the energy distance ξ of the state k from the chemical
potential μ. (F) Schematic view of an NMR/ESR experiment in which the spins
precess, inducing a magnetization oscillation. (G) Corresponding view for a
CCFS experiment, in which the pseudospins precess upon ultrafast excitation
and coherent charge fluctuation generation.

*The pseudospin operators are defined as σxk = ðck↑c−k↓ +h:c:Þ, iσyk = ðck↑c−k↓ −h:c:Þ, and
σzk = 1−nk↑ −n−k↓. Here nkσ = c†kσckσ and c†kσ (ckσ) are creation (annihilation) operators
for electrons.
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Higgs mechanism and visible light spectroscopy 
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  condensate’s	
  coherent	
  oscillaFons	
  is	
  not	
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Take-home messages 

Conclusions Overview 

•  Light excitation can excite coherent oscillations of the Cooper pairs 
condensate 

 
 
•  These oscillations resonate at the CT energy (High-energy scale, suggestive 

of RVB type of pairing mechanism) 

•  These oscillations may be driven by Higgs modes (under debate) 
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