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Experiments: Pseudogap

in high-Tc materials: Electronic spectral function is 
suppressed along the BZ face, but not along zone 
diagonal.!

Key physics dependence on momentum around Fermi 
surface, Difference of spectral function around Fermi 
surface.!

Doping dependence of region with quasiparticles

insights into the microscopic nature of this
2DCO and its relationship to the single-particle
excitations in k-space. We performed ARPES
studies of Na-CCOC (x 0 0.05, 0.10, and
0.12), allowing us to combine information
from the complementary real- and k-space
electronic probes. Our results reveal a strong
momentum anisotropy, in which the 2DCO
is associated with strongly suppressed anti-
nodal electronic states that have a nesting
wave vector of kqk È 2p/4a0, whereas the
nodal states dominate the low-energy spec-
tral weight in k-space.

ARPES measurements were performed at
Beamline 5-4 of the Stanford Synchrotron

Radiation Laboratory with the use of single
crystals with typical dimensions of 1 ! 1 !
0.1 mm grown by a high-pressure flux method
(7). Na-CCOC is devoid of complications
such as superlattice modulations, bilayer
splitting, and orthorhombic distortions and is
highly 2D with a resistivity anisotropy rc/rab
of 104 (8). The x 0 0.10 and 0.12 samples had
Tc_s of 13 and 22 K, respectively (maximum
Tc 0 28 K), whereas the x 0 0.05 composi-
tion was nonsuperconducting. Typical ener-
gy and momentum resolutions were 14 meV
and 0.35- (corresponding to Dk È 0.02 p/a0),
and samples were measured at pressures lower
than 5 ! 10j11 torr.

In Fig. 1, A to C, we show the momen-
tum distribution of spectral weight within a
T10-meV window around the Fermi energy,
EF. The predominance of the nodal states can
be seen in the raw data, as the intensity is
maximum along the (0,0)-(p,p) nodal direction
and drops off rapidy toward (p,0), the anti-
node. To better quantify the Fermi surface
(FS), we have taken the maximal position in
each momentum distribution curve (MDC) at
EF, which intersected the FS and identified this
as a Fermi wave vector, kF. To minimize the
effects of photoelectron matrix elements or
sample-dependent variations, we confirmed
our results on additional samples by varying
photon energies (between 16.5 and 28 eV) or
acquiring data with polarizations parallel to the
Cu-O bond direction, or in the second Brillouin
zone. All results are summarized in Fig. 1, D
to F, and representative MDCs are overlaid
in Fig. 1E. Despite the much weaker intensity
of the antinodal MDC, its momentum structure
nevertheless allows one to define kF and es-
tablish a continuous contour reminiscent of the
predicted noninteracting FS (9). Although this
approach is robust in extracting the normal-
state FS for conventional metallic or even
gapped systems, the situation is less clear for
strongly correlated systems where the quasi-
particle (QP) residue, Z, can be much less
than 1. However, we will still refer colloquially
to these extracted contours as Fermi surfaces
throughout this work (10).

The manifestation of the 2DCO in the
ARPES spectra can be observed in Fig. 1, D to
F, where the weak antinodal segments appear
to be well nested and separated by approx-
imately kqk È 2p/4a0 (Fig. 2A). In Fig. 2, A
and B, we compare a schematic of the low-
energy intensity with the real space dI/dV map
(6). This correspondence is exhibited not only
in the wave vectors, but also in the unusual
energy (w) dependence of this pattern. The tun-
neling data exhibit a surprising bias indepen-
dence (6), and our antinodal MDCs (Fig. 2C)
also demonstrate a similar insensitivity to w
below 50 meV, in contrast to the dispersive
nodal MDCs (Fig. 2D). This unphysical ver-
tical dispersion of the antinodal excitations is
highly atypical and almost certainly does not
represent the behavior of the actual QP band,
as will be discussed later. The doping depen-
dence of the nodal and antinodal kF_s is
summarized in Fig. 2E. The relatively weak
doping and w dependence of the antinodal kF
is in stark contrast to the expected behavior of
a near-EF van Hove singularity, where both the
doping and w dependence of the MDCs should
be sizable. Moreover, the contrast between the
strong nodal states and weak antinodal seg-
ments is surprising given that the low-energy
STM spectra are almost entirely dominated by
the commensurate 2DCO (6).

This anisotropy can also be observed in the
energy distribution curves (EDCs) along the

Fig. 2. (A) Schematic of
the low-lying spectral
intensity for x 0 0.10.
The hatched regions
show the nested por-
tions of FS, and the FS
angle is defined in the
lower right quadrant. (B)
An STM dI/dVmap from
(6) is shown from
Ca1.9Na0.1CuO2Cl2, ta-
ken at 24 meV and
100 mK, exhibiting the
4a0 ! 4a0 ordering.
MDCs along the anti-
nodal (C) and nodal (D)
directions are shown for
Ca1.88Na0.12CuO2Cl2, ta-
ken at 15 K with hu 0
25.5 eV. (E) The doping
dependence of the kF
wave vectors along the
(0,0)-(p,p) (blue trian-
gles) and (p,0)-(p,p)
(red circles) directions.
Error bars show the SD
from sample to sample.
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Fig. 1. (A to C) The
momentum distribu-
tion of spectral weight
within a T10-meV
window around EF for
x 0 0.05, 0.10, and
0.12 in one quadrant
of the first Brillouin
zone. Data were taken
at 15 K with hu 0 25.5
eV and a polarization
45- to the Cu-O bond,
normalized to a fea-
tureless background at
high binding energies
(–1 eV), and symme-
trized along the (0,0)-
(p,p) line. The data
acquisition range is
shown within the black
lines. The FS contours shown in (D to F) were compiled from more than four samples for each
composition with photon energies between 16.5 and 28 eV and photon polarizations both parallel to
and at 45- to the Cu-O bond direction. Data from these samples constitute the individual points; the
best fit is shown as a solid line. The region in which a low-energy peak was typically observed is
marked by gold circles. The gray shaded areas in (E) represent the momentum distribution of
intensity at EF T10 meV along the (0,0)-(p,p) and (p,0)-(p,p) high-symmetry directions.

D x = 0.05

A

x = 0.05(0,0)

(π,π) B

x = 0.10

C

x = 0.12

E x = 0.10 F x = 0.12

R E P O R T S

11 FEBRUARY 2005 VOL 307 SCIENCE www.sciencemag.org902

 o
n 

Se
pt

em
be

r 2
1,

 2
00

9 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

ARPES: Shen et al., Science 307, 901 (2005)
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Figure 1 Symmetrized EDCs for underdoped samples along the Fermi surface. a, Tc = 90 K sample in the superconducting state at T = 40 K. b, Tc = 90 K sample in the
pseudogap phase at T = 140 K. The bottom EDC is at the node, whereas the top is at the antinode, as defined in e. c, Symmetrized EDCs for a very underdoped, Tc = 25 K,
sample (corresponding to kF points 4–15), measured at 55 K in the pseudogap state. For this sample, the spectral weight is much reduced relative to higher doping values.
We therefore removed the extrinsic background19. d, Variation of the gap around the Fermi surface extracted from a and b. The uncertainty in the gap is ±4 meV for the
pseudogap, and ±2 meV for the superconducting gap. e, Location of the momentum cuts (red lines), Fermi surface (blue curves), and special points (node and antinode) in
the zone.

the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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the fits (as in Fig. 1d). Indeed, at 200 K, the onset of the gap at
the end of the Fermi arc is steeper than at 110 K, and the arc
is longer. Note that the gap size remains roughly constant in the
straight section of the Fermi surface near the antinode. In this
region, the Fermi surface is essentially parallel to the Brillouin-zone
axis (Fig. 1e).

We now discuss our most important finding. As shown in
Figs 1 and 2, the anisotropy of the pseudogap around the Fermi
surface is temperature and doping dependent. Despite this, we find
the rather remarkable result that the momentum dependence of
the gaps from samples with different temperatures and different
doping values can be scaled by defining a reduced temperature
t = T/T∗(x) and by normalizing the gap by its value at the
antinode. To demonstrate this scaling, we show six data sets in Fig. 3

with different temperatures and doping, but which are divided
into two groups, one with t = 0.9 and the other with t = 0.45.
For comparison, we show the angular anisotropy of the d-wave
superconducting gap (blue dashed line). It is well known10 that
the magnitude of the pseudogap at the antinode tracks T∗ as a
function of x. Surprisingly, the entire momentum and temperature
dependence of the normalized pseudogap ∆(φ)/∆(0) only
depends on T/T∗(x), whereas the Tc of the sample does not
play a role. We note that scaling with T∗ has been observed for
susceptibility and transport data11–13.

However, the gap size alone does not provide a full description
of the low-energy excitations in the pseudogap state, for which we
also need to consider the temperature dependence of the intensities.
The inset of Fig. 2c shows symmetrized EDCs for a Tc = 89 K
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I. INTRODUCTION

The discovery of superconductivity at 30 K in the
LaBaCuO ceramics by Bednorz and Müller (1986)
opened the era of high-Tc superconductivity, changing
the history of a phenomenon that had before been con-
fined to very low temperatures [until 1986 the maximum
value of Tc was limited to the 23.2 K observed in Nb3Ge
(Gavaler, 1973; Testardi et al., 1974)]. This unexpected
result prompted intense activity in the field of ceramic
oxides and has led to the synthesis of compounds with
increasingly higher Tc , all characterized by a layered
crystal structure with one or more CuO2 planes per unit
cell, and a quasi-two-dimensional (2D) electronic struc-
ture. By 1987, a Tc of approximately 90 K (i.e., higher
than the boiling point of liquid nitrogen at 77 K) was
already observed in YBa2Cu3O7!" (Wu et al., 1987).
The record Tc of 133.5 K (at atmospheric pressure) was
later obtained in the trilayer system HgBa2Ca2Cu3O8"x
(Schilling et al., 1993).

One may wonder whether the impact of the discovery
by Bednorz and Müller (1986) would have been some-
what overlooked if MgB2 , with its recently ascertained
39 K Tc , had already been discovered [Nagamatsu et al.
(2001); for a review see Day (2001)]. However, indepen-
dent of the values of Tc the observation of superconduc-
tivity in the ceramic copper oxides was in itself an unex-
pected and surprising result. In fact, ceramic materials
are typically insulators, and this is also the case for the
undoped copper oxides. However, when doped the latter
can become poor metals in the normal state and high-
temperature superconductors upon reducing the tem-
perature (see in Fig. 1 the phenomenological phase dia-
gram of electron- and hole-doped high-temperature
superconductors, here represented by Nd2!xCexCuO4
and La2!xSrxCuO4 , respectively). In addition, the de-
tailed investigation of their phase diagram revealed that
the macroscopic properties of the copper oxides are pro-
foundly influenced by strong electron-electron correla-
tions (i.e., large Coulomb repulsion U). Naively, this is
not expected to favor the emergence of superconductiv-
ity, for which electrons must be bound together to form
Cooper pairs. Even though the approximate T2 depen-
dence of the resistivity observed in the overdoped me-
tallic regime was taken as evidence for Fermi-liquid be-
havior, the applicability of Fermi-liquid theory (which
describes electronic excitations in terms of an interacting

gas of renormalized quasiparticles; see Sec. II.C) to the
‘‘normal’’ metallic state of high-temperature supercon-
ductors is questionable, because many properties do not
follow canonical Fermi-liquid behavior (Orenstein and
Millis, 2000). This breakdown of Fermi-liquid theory
and of the single-particle picture becomes most dramatic
upon approaching the undoped line of the phase dia-
gram (x#0 in Fig. 1), where one finds the antiferromag-
netic Mott insulator (see Sec. III). On top of this com-
plexity, it has long been recognized that also the
interplay between electronic and lattice degrees of free-
dom as well as the tendencies towards phase separation
are strong in these componds (Sigmund and Müller,
1993; Müller, 2000).

The cuprate high-temperature superconductors have
attracted great interest not only for the obvious applica-
tion potential related to their high Tc , but also for their
scientific significance. This stems from the fact that they
highlight a major intellectual crisis in the quantum
theory of solids, which, in the form of one-electron band
theory, has been very successful in describing good met-
als (like Cu) but has proven inadequate for strongly cor-
related electron systems. In turn, the Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen et al., 1957; see also
Schrieffer, 1964), which was developed for Fermi-liquid-
like metals and has been so successful in describing con-
ventional superconductors, does not seem to have the
appropriate foundation for the description of high-Tc
superconductivity. In order to address the scope of the
current approach in the quantum theory of solids and
the validity of the proposed alternative models, a de-
tailed comparison with those experiments that probe the
electronic properties and the nature of the elementary
excitations is required.

In this context, angle-resolved photoemission spec-
troscopy (ARPES) plays a major role because it is the
most direct method of studying the electronic structure
of solids (see Sec. II). Its large impact on the develop-
ment of many-body theories stems from the fact that this
technique provides information on the single-particle
Green’s function, which can be calculated starting from a

FIG. 1. Phase diagram of n- and p-type superconductors,
showing superconductivity (SC), antiferromagnetic (AF),
pseudogap, and normal-metal regions.
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SC

temperature, momentum, and energy, with high-
precision measurements of the polar Kerr effect
(PKE) and time-resolved reflectivity (TRR). Bi2201
was chosen to avoid the complications resulting
from bilayer splitting and strong antinodal bosonic
mode coupling inherent to Bi2Sr2CaCu2O8+d

(Bi2212) (1).WhereasARPES is a surface probe,
PKE enables us to monitor a bulk, thermody-
namic (via the fluctuation-dissipation theorem)
property that has proven (28) to be a sensitive
probe of the onset of a broken-symmetry state,
and TRR gives complementary information on
the bulk, near-equilibrium dynamics of the system.

We will first analyze our ARPES data col-
lected in different temperature regions. Above
T*, Pb-Bi2201 has a simple one-band band struc-
ture (right side of Fig. 1). For each cut in mo-
mentum space perpendicular to G-M [(0,0)-(p,0)]
(C1 to C7 in Fig. 1), the only distinct feature in
the corresponding Fermi-function–divided (27)
energy distribution curves (EDCs) is a maximum
(red circles in Fig. 2, A to G). As a function of the
y component of the wave vector (ky), the maxima
have an approximately parabolic dispersion for

Fig. 1. Fermi surface maps mea-
sured below Tc at 10 K (left) and
above T* at 172 K (right) in the
same momentum-space region
(flipped for display). Dashed white
lines labeled C1 to C7 depict the
cuts along which the EDCs shown in
Fig. 2, A toN,weremeasured.Magenta
squares labeled P1 to P16 along M-G
indicate momenta where EDCs in Fig.
2, V and W, were measured. Red and
blue squares on the left indicate mo-
menta of the Fermi-level crossing kF
(kF1 and kF2 in Fig. 2, A to G) at 172
K and back-bending kG (black arrows
in Fig. 2, O to S) at 10 K of the dis-
persion of the EDC maximum along
cuts C1 to C7. Red and blue circles
on the right indicate momenta of
identifiable peaks in the momentum
distribution curves (measured along
cuts parallel to cut C7) at EF at 172 K and 10 K, respectively. The solid red curves are a guide to the eye for the
red squares and circles, whereas the dashed blue curve is the guide for the blue squares; together they show
an increased kG−kF misalignment going away from the nodal toward the antinodal region. The magenta-
shaded region is approximately where multiple EDC features are found at 10 K.
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Error bars are estimated based on the sharpness of features, to be T3 meV
minimum and T8 meV maximum [examples shown in (O)] based on different
EDC analyses (27). (V andW) EDCs at momenta P1 to P16 along M-G (Fig. 1) at
172 K and 10 K, respectively. Circles denote the EDC shoulder feature (solid
green) and the EDC maximum feature at 10 K (blue) and at 172 K (red).
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He et al., Science 331, 1579 (2011)

E - EF (eV) E - EF (eV)

Arpes EDC for cuts along Brillouin-
zone boundary (near (π,0)), almost 
optimally doped Pb-Bi2201 with Tc 
of 38K, T* of 132K

172 K (NS) 10 K (SC)

each cut (red circles in Fig. 2, O to U); the band
bottom lies on the G-M axis, and the dispersion
crosses the Fermi level (EF) at two momenta, kF
(kF1 and kF2). The binding energy of the band

bottom monotonically decreases from near G to
M (Fig. 2, O to U). We take the Fermi-level
crossings of this single band to define the Fermi
surface. Despite the simplicity of the electronic

structure above T*, the width and energy-
dependent broadening of the EDC maximum
features, along with the familiar strange metal
behavior seen in transport, imply that the system
is not well described as a Fermi liquid.

We now turn to the temperature region below
Tc. Here, the entire Fermi surface is gapped ex-
cept at the nodal points (kF lying on the zone
diagonal). In the nodal region, consistent with
previous reports (4, 5, 11, 12), a d-wave–like gap
along the Fermi surface is observed that we quan-
tify as the energy position of the EDC maximum
(blue circles) at kF (Fig. 2, L to N). This max-
imum is still the only identifiable feature in the
EDC. By comparing the EDCs in Fig. 2, E to G,
with those in Fig. 2, L to N, we see that the peaks
of EDCs near kF are much sharper below Tc than
above T*; however (perhaps surprisingly), the
peaks well away from kF appear broader but with
larger experimental uncertainties (also see Fig. 2,
Vand W).

Away from the nodal region, the dispersion
along each cut rises to a minimum binding en-
ergy and then bends back (Fig. 2, H to K). These
back-bendings (black arrows in Fig. 2, O to S)
occur at momenta kG (kG1 and kG2), which are
increasingly separated from the Fermi surface
(compare blue and red squares on the left side of
Fig. 1) toward the antinodes (kF lying on the zone
boundary). Note that, for a superconducting gap,
as a consequence of the particle-hole symmetry,
one would expect kG ≅ kF (fig. S6), as is the case

Fig. 4. (A and B)
Selected EDCs at 40 K
and 22 K along cut C1
(Fig. 1). See Fig. 2, A
and H, for data at 172 K
and 10 K, and fig. S1, A
to E, for other interme-
diate temperatures. (C)
Antinodal EDCs at 10 K
after dividing by the 40
K counterparts, covering
themomentum range in-
dicated by the gray bar
in (H), in comparisonwith
those in (D) taken in a
similar range at 30 K on
an OP Bi2212 sample.
Nondispersive peaks are
seen in both cases de-
spite different sharpness
and energy positions. (E
to G) EDCs at different
fixedmomenta [specified
in (A) and (H)] and tem-
peratures around Tc. The
counterintuitive increase
of the antinodal gap, de-
fined by the energy posi-
tion of the EDCmaximum
in (F) and (G), with temperature rising above Tc, cannot be understood with a
single energy scale assumed. (Insets) Corresponding EDCs divided by the 60 K
counterpart, showing the peaks losing definition above Tc (fig. S2E). (H) Summary
for the dispersions of related EDC features across and below Tc. Vertical arrows

specify momenta M, kF2 at 172 K, and kG2 at 10 K. Apparent asymmetry of the
dispersions across M is due to a finite deviation of the cut from the high-symmetry
direction and a subtle balance of spectral weight between different features in the
EDC. All EDC features and error bars are similarly determined as in Fig. 2.
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Fig. 3. Temperature
dependence of Kerr ro-
tation (qK) measured by
PKE, in comparison with
that of the binding en-
ergy position of the EDC
maximum at kF given by
ARPES [reproduced from
fig. S1F and (29)]. ARPES
results are normalized to
the80Kvalues (free from
the interference of fluc-
tuating superconductivity).
The dashed black curve
is a guide to the eye for
the PKE data, showing a
mean-field–like critical
behavior close to T* [see
additional discussion in
(27)]. (Left inset) Tem-
perature dependence of
the transient reflectivity
changemeasured by TRR
(right axis). The dashed
black curve (left axis) is reproduced from the main panel. Error bars (if not visible) are smaller than the
symbol size. (Right inset) Dispersion of the EDC maximum at various temperatures above Tc, summa-
rizing the results of Figs. 2A and 4A and fig. S1, A to E. All data were taken on samples from the same
growth and annealing batch, except those reproduced from (29) on differently annealed samples.
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temperature, momentum, and energy, with high-
precision measurements of the polar Kerr effect
(PKE) and time-resolved reflectivity (TRR). Bi2201
was chosen to avoid the complications resulting
from bilayer splitting and strong antinodal bosonic
mode coupling inherent to Bi2Sr2CaCu2O8+d

(Bi2212) (1).WhereasARPES is a surface probe,
PKE enables us to monitor a bulk, thermody-
namic (via the fluctuation-dissipation theorem)
property that has proven (28) to be a sensitive
probe of the onset of a broken-symmetry state,
and TRR gives complementary information on
the bulk, near-equilibrium dynamics of the system.

We will first analyze our ARPES data col-
lected in different temperature regions. Above
T*, Pb-Bi2201 has a simple one-band band struc-
ture (right side of Fig. 1). For each cut in mo-
mentum space perpendicular to G-M [(0,0)-(p,0)]
(C1 to C7 in Fig. 1), the only distinct feature in
the corresponding Fermi-function–divided (27)
energy distribution curves (EDCs) is a maximum
(red circles in Fig. 2, A to G). As a function of the
y component of the wave vector (ky), the maxima
have an approximately parabolic dispersion for

Fig. 1. Fermi surface maps mea-
sured below Tc at 10 K (left) and
above T* at 172 K (right) in the
same momentum-space region
(flipped for display). Dashed white
lines labeled C1 to C7 depict the
cuts along which the EDCs shown in
Fig. 2, A toN,weremeasured.Magenta
squares labeled P1 to P16 along M-G
indicate momenta where EDCs in Fig.
2, V and W, were measured. Red and
blue squares on the left indicate mo-
menta of the Fermi-level crossing kF
(kF1 and kF2 in Fig. 2, A to G) at 172
K and back-bending kG (black arrows
in Fig. 2, O to S) at 10 K of the dis-
persion of the EDC maximum along
cuts C1 to C7. Red and blue circles
on the right indicate momenta of
identifiable peaks in the momentum
distribution curves (measured along
cuts parallel to cut C7) at EF at 172 K and 10 K, respectively. The solid red curves are a guide to the eye for the
red squares and circles, whereas the dashed blue curve is the guide for the blue squares; together they show
an increased kG−kF misalignment going away from the nodal toward the antinodal region. The magenta-
shaded region is approximately where multiple EDC features are found at 10 K.
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Fig. 2. (A to G) and (H toN) Selected EDCs at 172 K and at 10 K, respectively,
for cuts C1 to C7, nearly perpendicular to G-M (Fig. 1). Each EDC corresponds to
a white point in the cuts in Fig. 1. EDCs inmagenta and orange are located close
to kF. (O toU) Dispersions of the EDC features in (A) to (N) for cuts C1 to C7. For
each dispersion curve, every other symbol corresponds to an EDC in (A) to (N).

Error bars are estimated based on the sharpness of features, to be T3 meV
minimum and T8 meV maximum [examples shown in (O)] based on different
EDC analyses (27). (V andW) EDCs at momenta P1 to P16 along M-G (Fig. 1) at
172 K and 10 K, respectively. Circles denote the EDC shoulder feature (solid
green) and the EDC maximum feature at 10 K (blue) and at 172 K (red).

25 MARCH 2011 VOL 331 SCIENCE www.sciencemag.org1580

REPORTS

 o
n 

Fe
br

ua
ry

 2
5,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

190 J.G. Bednorz and K.A. Miiller: B a - L a - C u - O  System 

show strong Jahn-Teller (J.T.) effects [13]. While 
SrFe(VI)O3 is distorted perovskite insulator, 
LaNi(III)O3 is a J.T. undistorted metal in which the 
transfer energy b~ of the J.T. eg electrons is sufficiently 
large [14] to quench the J.T. distortion. In analogy 
to Chakraverty's phase diagram, a J.T.-type polaron 
formation may therefore be expected at the border- 
line of the metal-insulator transition in mixed perovs- 
kites, a subject on which we have recently carried 
out a series of investigations [15]. Here, we report 
on the synthesis and electrical measurements of com- 
pounds within the B a - L a - C u - O  system. This sys- 
tem exhibits a number of oxygen-deficient phases 
with mixed-valent copper constituents [16], i.e., with 
itinerant electronic states between the non-J.T. Cu a + 
and the J.T. Cu z+ ions, and thus was expected to 
have considerable electron-phonon coupling and me- 
tallic conductivity. 

lI. Experimental 

1. Sample Preparation and Characterization 

Samples were prepared by a coprecipitation method 
from aqueous solutions [17] of Ba-, La- and Cu-ni- 
trate (SPECPURE JMC) in their appropriate ratios. 
When added to an aqueous solution of oxalic acid 
as the precipitant, an intimate mixture of the corre- 
sponding oxalates was formed. The decomposition 
of the precipitate and the solid-state reaction were 
performed by heating at 900 ~ for 5 h. The product 
was pressed into pellets at 4 kbar, and reheated to 
900 ~ for sintering. 

2. X-Ray Analysis 

X-ray powder diffract 9 (System D 500 SIE- 
MENS) revealed three individual crystallographic 
phases. Within a range of 10 ~ to 80 ~ (20), 17 lines 
could be identified to correspond to a layer-type per- 
ovskite-like phase, related to the K2NiF, structure 
( a=3 .79~  and c=13.21 ~) [16]. The second phase 
is most probably a cubic one, whose presence depends 
on the Ba concentration, as the line intensity de- 
creases for smaller x(Ba). The amount of the third 
phase (volume fraction > 30% from the x-ray intensi- 
ties) seems to be independent of the starting composi- 
tion, and shows thermal stability up to 1,000 ~ For 
higher temperatures, this phase disappears progres- 
sively, giving rise to the formation of an oxygen-defi- 
cient perovskite (La3Ba3Cu601,) as described by Mi- 
chel and Raveau [16]. 
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Fig. 1. Temperature dependence ofresistivityin Ba~Las _=Cu505 (a y) 
for samples with x ( B a ) =  1 (upper curves, left scale) and x ( B a ) =  
0.75 (lower curve, right scale). The first two cases also show the 
influence of  current density 

3. Conductivity Measurements 

The dc conductivity was measured by the four-point 
method. Rectangular-shaped samples, cut from the 
sintered pellets, were provided with gold electrodes 
and contacted by In wires. Our measurements be- 
tween 300 and 4.2 K were performed in a continuous- 
flow cryostat (Leybold-Hereaus) incorporated in a 
computer-controlled (IBM-PC) fully-automatic sys- 
tem for temperature variation, data acquisition and 
processing. 

For samples with x(Ba)_<l.0, the conductivity 
measurements, involving typical current densities of 
0.5 A/cm 2, generally exhibit a high-temperature me- 
tallic behaviour with an increase in resistivity at low 
temperatures (Fig. 1). At still lower temperatures, a 
sharp drop in resistivity (>90%) occurs, which for 
higher currents becomes partially suppressed (Fig. 1 : 
upper curves, left scale), This characteristic drop has 
been studied as a function of annealing conditions, 
i.e., temperature and 02 partial pressure (Fig. 2). For 
samples annealed in air, the transition from itinerant 
to localized behaviour, as indicated by the minimum 
in resistivity in the 80 K range, is not very pro- 
nounced. Annealing in a slightly reducing atmo- 
sphere, however, leads to an increase in resistivity 
and a more pronounced localization effect. At the 
same time, the onset of the resistivity drop is shifted 

Bednorz and Müller, Z. Phys. B 64, 
189 (1986)



Questions to theory

Pseudogap at 
intermediate interaction 

strengths

…………we will present a potential answer in this talk………

Contained within a well-defined model &  
systematic and controllable approximation?

Superconductivity at 
intermediate interaction 

strengths

Coexistence, precursor, competition, ?

What is the gap function?
what is the pairing glue? 

superconducting self energies?



Theory: Hubbard model

Simulations of wide parameter regimes, for a range of cluster sizes/geometries. 
Determine which features are robust, which may be artifacts of the model

Open theoretical question: how much of the physics on the last pages is contained in 
this model?

Restrict to simple minimal model with kinetic and potential energy terms: Hubbard model:

H = �
X

hiji,�

tij(c
†
i�cj� + c†j�ci�) + U

X

i

ni"ni#.

Even for the most simple model, when kinetic energy ~ potential energy we have no working 
theoretical tools: quantum many-body theory needs numerical methods!

Here: Cluster DMFT: diagrammatic approximation based on mapping of the system 
onto a self-consistently adjusted multi-orbital quantum impurity model, solved by 
numerically exact ‘continuous-time’ QMC.



Cluster DMFT

Example tiling of the BZ: 2d, Nc = 16

DMFT: Metzner, Vollhardt, Phys. Rev. Lett. 62, 324 (1989), 
Georges, Kotliar, Phys. Rev. B 45, 6479 (1992), 
Jarrell, Phys. Rev. Lett. 69, 168 (1992), 
Georges et al., Rev. Mod. Phys. 68, 13 (1996)

Basis functions

Systematic truncation 
with cluster size Nc

Cluster scheme: ‘Dynamical Cluster Approximation’  
(DCA), basis functions ϕ constant on patches in BZ

⌃(k, !) =
X

n

⌃n(!)�n(k) ⇡
NcX

n

⌃n(!)�n(k)

Approximation to self energy:
Cluster DMFT: 
controlled approximation, 
exact for Nc → ∞; ‘single 
site’ DMFT for Nc =1. 
Small parameter 1/Nc

(0, 0)

(⇡, ⇡)

Resulting lattice system mapped onto impurity model & self-consistency

DCA: Hettler et al., Phys. Rev. B 58, R 7475 (1998), 
Lichtenstein, Katsnelson, Phys. Rev. B 62, R9283 (2000), 
CDMFT: Kotliar et al., Phys. Rev. Lett. 87, 186401 (2001), 
Review: T. Maier, et al., Rev. Mod. Phys. 77, 1027 (2005).

Emanuel Gull and Andrew J. Millis, arXiv:1407.0704

Example tiling of the BZ: 2d, Nc = 2, 4, 4, 8
(0, �)

(�, 0)

(�, �)

(0, 0)

(0, ⇡)

(⇡, 0)(0, 0)

(⇡, ⇡)

(0, 0)

(⇡, ⇡)

(⇡/2, ⇡/2)

(⇡, 0)(⇡, ⇡)

(0, 0)



Intermezzo: 3D Hubbard Model
Phys. Rev. Lett. 106, 030401 (2011)

T. Esslinger, Annu. Rev. Condens. 
Matter Phys. 1, 129-152 (2010)

‘Optical Lattice Emulator’: Goal is to 
experimentally simulate simple model 
Hamiltonians using cold atomic (fermionic) 
gases.

Can we emulate the optical lattice emulator? 
Numerically exact results needed!

Test model: 3D Hubbard

H = �
�

⇤ij⌅,�

tij(c†i�cj� + c†j�ci�) + U
�

i

ni�ni⇥.

Temperatures in experiment are high (far above AFM phase).



Controlling DCA (3d Hubbard, high T)
Phys. Rev. Lett. 106, 030401 (2011)!

Phys. Rev. B 83, 075122 (2011)

Solve quantum impurity model self-consistently for a range of cluster sizes:!

18! 36! 48! 56! 64! 84! 100!

Compute thermodynamics: energy, 
density, entropy, free energy, double 
occupancy, spin correlation functions, …: 
Observable estimates and errors for a 
finite size system.

Extrapolate observable estimate to 
the infinite system size limit using 
known finite size scaling

-0.54

-0.52

-0.5

-0.48

-0.46

0 0.05 0.1 0.15 0.2

E
/t

N−2/3

DMFT
DCA

extrapolation

Fine size scaling behavior: Maier, Jarrell, Phys. Rev. B 65, 041104(R) (2002) 



Controlling DCA (3d Hubbard, high T)
Phys. Rev. Lett. 106, 030401 (2011)

Validation against lattice QMC (1/2 filling) and HTSE (high T)
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Controlling DCA (3d Hubbard, high T)
Phys. Rev. Lett. 106, 030401 (2011)

k-dependence of the self energy systematically reintroduced, convergence 
for self energy observed: Approximation controlled
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High temperature T/t = 1: Exact 
convergence of the self energy 
as a function of cluster size.
Intermediate temperature T/t = 
0.5: Convergence visible, 
extrapolation needed.

Low temperature T/t = 0.35: 
Convergence not obvious, 
critical regime with diverging 
correlation length not well 
captured. (~TN)
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2d High-T: extrapolations & exact results

2

sis on doping near to half filled. Our goals are threefold:
First, to provide a numerically exact equation of state in
regions that were previously inaccessible. Second, to pro-
vide reference data for use in experimental systems trying
to replicate Hubbard model physics, e.g. cold atomic gas
systems, and third, to provide reliable comparison and
benchmark data to which new numerical and analytical
methods can be compared and for which their reliability
can be tested.
To do this we employ the dynamical cluster approxi-

mation (DCA), one of several cluster extensions41–45 to
the dynamical mean-field theory (DMFT).46–48 Using the
convergence of the DCA to the thermodynamic limit
(TL) we obtain converged lattice self energies and sin-
gle particle Green’s functions for the 2D Hubbard model
and compute the equation of state over a range from
high temperature, T ≈ 10t, down to intermediate tem-
perature, T ≈ 0.3t. We explore U=4, 8, 12 for weak,
intermediate, and strong coupling as well as a range of
doping away from half filling from n = 0.85 to 1.0.
We present the essential theory and outline the com-

putational technique used in Sec. II. Sec. III will contain
our main results and discussion while Sec. IV will con-
clude. A database of numerical results for the equation
of state of the Hubbard model along with a detailed de-
scription of these results is included in the supplementary
material.49

II. THEORY

The Hubbard model Hamiltonian is given by

H = −
∑

⟨i,j⟩σ

t
(

c†iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓, (1)

where c†iσ and ciσ create and annihilate (respectively) an

electron with spin σ =↑,↓ on site i, niσ = c†iσciσ is the
number operator, and ⟨i, j⟩ denotes a summation over
nearest neighbour pairs with nearest neighbour hopping
energy, t, which sets the scale of all energies presented in
this work.
We solve the model in the ‘dynamical cluster approx-

imation’ (DCA). Within DMFT,46–48 the self energy is
approximated as a local, momentum-independent, quan-
tity. This allows one to map the problem to the solution
of an auxiliary Anderson impurity model (AIM) of a lo-
cal impurity in a self-consistently adjusted mean field in-
stead of the numerically intractable infinite lattice model.
Cluster extensions are then used to systematically rein-
troduce some momentum- and frequency dependence of
the self energy.54 Within DCA,

Σ(k) =
N
∑

K=1

φK(k)ΣK(ω) (2)

where k is the momentum and ω is frequency. φK(k) is
taken to have value 1 for a momentum k which lies in a
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n=1.0

T/t=1.0,  U/t=8

NLCE

DCA-DMFT

DQMC

FIG. 1. (Color online)(a) E = EK +EV in units of t, plotted
as a function of the inverse cluster size, 1/N , for T/t = 1.0 and
U/t = 8 at densities, n, near half filling. Horizontal dashed
lines are results from NLCE data.50 (b) Double occupancy
at half filling for T/t = 1.0 and U/t = 8. Horizontal dashed
curves are NLCE data50 and colored diamonds are values from
determinantal quantum Monte Carlo (DQMC) results at and
away from half filling51,52 and the dashed-dotted line is the
value extracted from DQMC results of Ref. 53 [Fig.2(c)] at
half filling.
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0.5

1

n

T=0.82
T=0.55
T=0.25
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T=0.55
T=0.25

U/t=8

NLCE

DCA-DMFT

FIG. 2. (Color online) The electron density per lattice site,
n, as a function of chemical potential, µ, for the intermediate
coupling case of U/t = 8 for T/t =0.82, 0.55, 0.25. We choose
µ relative to U/2 so that half filling corresponds to µ = 0.
Error bars mark our DCA calculations connected by solid
lines while circular points joined by dotted lines are NLCE
data from the supplement of Ref. 29.

6

of states becomes gapped and enters a partially gapped
pseudogap state. This momentum-selective Mott tran-
sition is the same physics which explains the partially
incompressible region of densities near half-filling at, for
example, T = 0.25 in Fig. 2.17–19 Overlaid with S(T )
is the NLCE data of Ref. 29 which has access to lower
temperatures as U/t is increased before diverging. In all
cases, the DCA precisely reproduces the NLCE over the
entire range of available temperatures. For the weaker
coupling case of U/t = 4 we continue to low temperature,
below which S(T ) → 0, and E(T ) becomes constant.
In Fig. 6(a) and 6(b) we present for U/t = 8 the en-

ergy and entropy respectively for doping values near to
but away from half filling. In addition, the energies also
provide direct access to the electronic specific heat shown
in Fig. 6(c). Our C(T ) data are obtained by taking fi-
nite differences in the spline interpolation of neighbouring
energy values and therefore amplifies the numerical noise
of Fig. 6(a). Previous work53,66,67 has identified the two
main features of the specific heat, namely the low tem-
perature spin and high temperature charge peaks. Those
previous works contained finite systems large enough as
to not encounter the issues pointed out in Figs. 3 and
4, but did not extrapolate to the thermodynamic limit.
Here we present accurate results of the high temperature
charge peak (near T/t = 2.0) in the TL. At low temper-
atures we simply remark that the impact of the ‘kink’ in
energy, which is only apparent for large clusters, acts to
create this sharp spin peak in C(T ) at T = T ∗.68 For
cold-atom experiments both of these peaks in C(T ) will
act as a strong barriers to further cooling of an atomic
gas system.
The results presented in Figs. 1 to 6 include only a

small part of the numerical results which we make avail-
able in this paper. For the sake of brevity we organize
these additional results in the supplementary material
which contains a detailed explanation of the data sets.
In addition to the U/t = 8 data we have presented here,
we also include in the supplement the extrapolations to
the thermodynamic limit for U/t = 4 and 12 both at and
away from half filling. We expect these results to be a
useful reference for comparison with other techniques in
parts of phase space (in particular at low T , away from
half-filling) where no previous controlled results exist.

IV. SUMMARY AND CONCLUSIONS

We have calculated the full thermodynamics of the 2D-
Hubbard model by extrapolating DCA results on large
clusters to the thermodynamic limit. Our results are ver-
ified within given errors by comparison to existing work
using numerical linked cluster expansions. We have ex-
tended our parameter range beyond what has been pre-

viously shown in the thermodynamic limit, to lower tem-
peratures than are accessible through NLCE, as well as
a wide range of filling values for which the NLCE does
not converge and DQMC fails because of a sign problem.
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FIG. 6. (Color online) Energy, E(T ), entropy, S(T ), and
specific heat capacity, C(T ), as functions of T/t extrapolated
to the TL for U/t = 8 for filling values of n = 0.85, 0.9, 0.95,
and 1.0 (half-filled).

We assert that our results are numerically exact within
the errors we provide in the thermodynamic limit verified
by explicitly examining the extent of spin correlations in
real space. From this we can observe that our choice of
cluster size has included all correlations.
We note the occurrence of low temperature features in

energy and entropy which seem to correlate with the on-
set of pseudogap physics at T ∗ which are not captured di-
rectly in thermodynamic quantities for small clusters. Fi-
nally, we present exact results for nearest-neighbour spin
correlations. Since ⟨Sz

i S
z
j ⟩nn is measurable in cold-atom

experiments, it may be used for thermometry.69,70 To this
end, we have shown that DCA is an ideal technique for
establishing the temperature dependence of these correla-
tions, and have provided tables in the supplement which
contain reference data needed for alternate techniques,
such as local density approximation (LDA).
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Low-T: fermionic sign problem
For 2D at physically interesting interaction 
strengths and temperatures: No 
quantitative extrapolation to TD limit.!

Variation of cluster sizes and geometries, 
establish robustness of results and 
trends. What is artifact, what is general?!

For superconductivity: cluster geometries 
of size 4–16.

In practice: only hard limitation given by 
fermionic sign problem of QMC solver!

Dynamical mean field bath helps to 
increase <sign>, convergence to TD limit 
becomes more regular, absence of shell 
effects.!

Approximation to Sigma, not G.
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Pseudogap Regime: Spectra

(π/2, π/2)

(π,0)

A

DC
B

A

DC
B

Analytically continued* spectral function A(ω): U = 7t, t’/t=0.15, βt=20  
(for various dopings, as a function of frequency)

for the nodal region.for the antinodal region

when reducing doping from x=0.157 to x=0.047: gap develops in the antinodal part of BZ, 
nodal part stays metallic.

N. Lin, E. Gull, and A.J. Millis, Phys. Rev. B 82, 045104 (2010)

*Maximum entropy of self-energy data

ings larger than x=0.11, a gap is not visible at the tempera-
tures T! t /20 accessible to us although a weak feature in the
x=0.13 curve suggests that the gap is still present. However,
certainly at x=0.11 and perhaps at x=0.13 the gap magnitude
!as defined by the peak-to-peak distance in the spectral func-
tion" is not small. We therefore suspect that at least a reduc-
tion in density of states would be observed at higher dopings
if we were able to perform the calculations at lower tempera-
tures.

The lower panel of Fig. 3 shows the !" /2," /2"-sector
spectral function at the same dopings. At the smallest doping,
a weak suppression of low-frequency density of states is evi-
dent but for most dopings this sector remains ungapped.

IV. INTERPLANE CONDUCTIVITY

An important early indication of the presence of a charge
pseudogap was provided by measurements of the frequency
dependence of the interplane conductivity.6 As can be seen
from Eq. !5", in high-Tc materials the matrix elements rel-
evant to the interplane conductivity highlight the zone-face
regions where the electron spectral function exhibits a gap
!see upper panel in Fig. 3".

Figure 4 shows the calculated temperature and doping de-
pendence of the interplane conductivity. The pseudogap is
visible as a temperature- and doping-dependent suppression
of the low-frequency interplane conductivity. The interplane
conductivity is suppressed over a relatively wide frequency
range; the suppression increases as the doping or temperature
decreases, and the gap fills in but does not close as tempera-
ture is increased. The calculations also reveal a weak maxi-
mum in the conductivity at an energy just above the
pseudogap. A somewhat broader version of this feature was
observed by Yu et al.59 It is possible that the relative sharp-
ness of the feature is an artifact related to our coarse graining
of momentum space, which might arise because the DCA
approximation necessarily produces a gap that is piecewise
continuous; and as is known from the familiar case of s-wave
BCS superconductivity a momentum-independent gap pro-
duces a peak. The results are reasonably consistent with
experiment.6,7,12,59 Reference 59 reports a high-energy
pseudogap of a magnitude consistent with what is found
here. It is important to note that in the widely studied
YBa2Cu3O6+x material, the interplay of strong local-field ef-
fects !arising from the bilayer structure" and phonon effects
produce complicated structures in the low-frequency conduc-
tivity which are not represented in the present
calculation.59–61

Conductivities may be characterized by “spectral weight,”
the integrated area in some frequency range. The total spec-
tral weight obeys an “f-sum” rule, which for the model stud-
ied here is
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regions where the electron spectral function exhibits a gap
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Figure 4 shows the calculated temperature and doping de-
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tivity which are not represented in the present
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d-wave Superconductivity
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Low enough temperature to access the superconducting phase!

- Large clusters that have a clear pseudogap state, different geometries!!

- Interactions strong enough that half-filled system is Mott insulating!

- Numerically exact algorithms (no bath fitting, no imaginary time discretization)!

- Increase of CPU power makes surveys of phase space possible!

- Precision good enough to perform reliable analytic continuation
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d-wave superconductivity: 
anomalous antinodal self-energy  
( - - - - ) at (pi,0) and ( - - - - ) at (0,pi)

Previous work: Large clusters, phase 
boundary from normal state susceptibilities, 
U/t=4: Maier, Jarrell, et al., Phys. Rev. Lett. 
95, 237001 (2005)

4-site clusters (Hirsch Fye), formalism: Lichtenstein, Katsnelson: Phys. 
Rev. B 62, R9283 (2000), NCA: Maier, Jarrell, Pruschke, Keller, Phys. 
Rev. Lett. . 85, 1524–1527 (2000), ED: Kancharla et al, PRB ’08, Civelli et 
al, PRL 08,09, PRB 08, CT-HYB: Sordi et al., PRL 2010 / 2012.

T=60/t, U=5.5t

See also talk by A.-M. Tremblay



Non-superconducting Fermi-
Liquid-like regime

Generic U/doping Phase Diagram 
(low T, superconducting phase, ~ 100K)
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Phase Diagram 
(T/t = 1/60)

On eight-site clusters:
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Energy differences (doping)

‘potential energy driven’ 
pairing

‘kinetic energy 
driven’ pairing

onset of normal 
state PG

E. Gull, A.J. Millis, Phys. Rev. B 86, 241106(R) (2012)
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wave functions, often starting from a single Slater determinant
with doubly occupied sites then being projected out.11–18

Information about pairing comes from comparing results
obtained from free fermion and BCS-paired starting points.
These works indicated that pairing was present for dopings
from x = 0 to x ∼ 0.25 and that over most of the phase
diagram the kinetic energy of the paired state was lower than
that of the unpaired state. However, variational results are
constrained by the choice of variational space; in particular by
the choice of projective BCS-type wave functions.

Another important class of theoretical approaches involves
phenomenological spin-fermion models.19–25 In these ap-
proaches it is assumed that the important physics arises from
the interaction of electrons with spin fluctuations (treated
as bosons but with boson self-energy effects arising from
coupling to fermions playing a crucial role). These models are
amenable to semianalytic treatment. Their analysis revealed
that in the strong-coupling limit the superconducting state
could have lower kinetic energy than the normal state. How-
ever, these models do not fully capture the strong correlation
effects associated with the Mott transition or the formation
of the pseudogap, and rely on assumptions about the most
physically relevant interactions.

We use the dynamical cluster approximation (DCA) version
of dynamical mean-field theory26 to evaluate Eqs. (2) and
(3) for the two-dimensional repulsive-U Hubbard model with
εk = −2t(cos kx + cos ky). In the DCA the Brillouin zone is
tiled with N patches and the electron self-energy is taken to be
piecewise constant, with a different value in each sector of mo-
mentum space. The sector self-energies are obtained from the
solution of an auxiliary quantum impurity model with param-
eters fixed by the Hubbard interaction and a self-consistency
condition discussed in detail in Ref. 26. The method yields a
dx2−y2 superconducting state.5,27–38 For the Hubbard model the
method becomes exact as N → ∞ and considerable evidence
is now available39–42 concerning the status of the finite N
results achievable numerically. Here we study the case N = 8,
which has been shown to be large enough for the results to
be representative of the infinite cluster size limit9 but small
enough to enable calculations of the necessary accuracy.40

We obtained the superconducting kinetic and potential en-
ergies KES and PES from superconducting solutions obtained
as described in Ref. 38 and the normal-state energies KEN

and PEN by solving the DMFT equations in the paramagnetic
phase with the same code but subject to the constraint that the
anomalous (⟨cc⟩) terms in the Green function and self-energy
vanished. Our results are obtained using the CT-AUX version43

of the continuous-time quantum Monte Carlo method44 with
submatrix updates45 and an extension to superconductivity.38

The energy differences are found to be very small and careful
attention to the high-frequency behavior is required for reliable
results. The submatrix methods are essential in obtaining data
of the requisite accuracy.

Figure 1 shows the phase diagram obtained from the
N = 8 DCA method in the interaction strength and doping
plane38 along with two arrows indicating the parameter-
space trajectories along which energies are computed in
this paper. At U ! 6.4t and carrier concentration n = 1
per site the approximation yields a paramagnetic (“Mott”)
insulating state which is at lower temperatures unstable to

antiferromagnetism. As electrons are removed the state evolves
to a conventional Fermi-liquid metal via an intermediate
“strange metal” phase characterized by a “pseudogap,” a
suppression of electronic density of states in the (0,π ) region
of the Brillouin zone.10,40,46–54 Superconductivity is found in
a strip,38 near the Mott insulator but separated from it by a
region of pseudogapped but nonsuperconducting states.53 At
carrier concentration n = 1 (vertical arrow) the ground state
of the model is believed to be antiferromagnetic at all U .
The n = 1 results were obtained by suppressing long-ranged
antiferromagnetic order (although short-ranged antiferromag-
netic correlations are still present) and are representative of
the properties of a metastable state. They are included because
the qualitative properties are seen to be the same as in the
doping-driven transition but the particle-hole symmetry at
n = 1 permits the acquisition of much higher quality data,
enabling a clearer view of the phenomena.

The two panels of Fig. 2 show the energy differences
obtained by subtracting the superconducting and normal-state
energies computed at inverse temperature β = 60/t along
the two parameter-space trajectories shown by the arrows in
Fig. 1, i.e., crossing the superconducting region by varying
the interaction strength or varying the carrier concentration.
The results obtained along the two trajectories are remarkably
similar, although the absence of a fermion sign problem at
n = 1 means we are able to obtain much better statistics in this

4.5 5 5.5 6
U/t

-0.02

-0.01

0

0.01

0.02

∆E

KES - KEN
PES - PEN
Etot,S-Etot,N

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1n
-0.02

-0.01

0

0.01

0.02

∆E

KES-KEN
PES-PEN
Etot,S-Etot,N

FIG. 2. (Color online) Differences in total, kinetic, and potential
energies (per site, in units of hopping t) between normal and
superconducting states, obtained as described in the text at density
n = 1 varying interaction strength (upper panel) and as function of
density at fixed interaction strength U = 6t (lower panel).
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wave functions, often starting from a single Slater determinant
with doubly occupied sites then being projected out.11–18

Information about pairing comes from comparing results
obtained from free fermion and BCS-paired starting points.
These works indicated that pairing was present for dopings
from x = 0 to x ∼ 0.25 and that over most of the phase
diagram the kinetic energy of the paired state was lower than
that of the unpaired state. However, variational results are
constrained by the choice of variational space; in particular by
the choice of projective BCS-type wave functions.

Another important class of theoretical approaches involves
phenomenological spin-fermion models.19–25 In these ap-
proaches it is assumed that the important physics arises from
the interaction of electrons with spin fluctuations (treated
as bosons but with boson self-energy effects arising from
coupling to fermions playing a crucial role). These models are
amenable to semianalytic treatment. Their analysis revealed
that in the strong-coupling limit the superconducting state
could have lower kinetic energy than the normal state. How-
ever, these models do not fully capture the strong correlation
effects associated with the Mott transition or the formation
of the pseudogap, and rely on assumptions about the most
physically relevant interactions.

We use the dynamical cluster approximation (DCA) version
of dynamical mean-field theory26 to evaluate Eqs. (2) and
(3) for the two-dimensional repulsive-U Hubbard model with
εk = −2t(cos kx + cos ky). In the DCA the Brillouin zone is
tiled with N patches and the electron self-energy is taken to be
piecewise constant, with a different value in each sector of mo-
mentum space. The sector self-energies are obtained from the
solution of an auxiliary quantum impurity model with param-
eters fixed by the Hubbard interaction and a self-consistency
condition discussed in detail in Ref. 26. The method yields a
dx2−y2 superconducting state.5,27–38 For the Hubbard model the
method becomes exact as N → ∞ and considerable evidence
is now available39–42 concerning the status of the finite N
results achievable numerically. Here we study the case N = 8,
which has been shown to be large enough for the results to
be representative of the infinite cluster size limit9 but small
enough to enable calculations of the necessary accuracy.40

We obtained the superconducting kinetic and potential en-
ergies KES and PES from superconducting solutions obtained
as described in Ref. 38 and the normal-state energies KEN

and PEN by solving the DMFT equations in the paramagnetic
phase with the same code but subject to the constraint that the
anomalous (⟨cc⟩) terms in the Green function and self-energy
vanished. Our results are obtained using the CT-AUX version43

of the continuous-time quantum Monte Carlo method44 with
submatrix updates45 and an extension to superconductivity.38

The energy differences are found to be very small and careful
attention to the high-frequency behavior is required for reliable
results. The submatrix methods are essential in obtaining data
of the requisite accuracy.

Figure 1 shows the phase diagram obtained from the
N = 8 DCA method in the interaction strength and doping
plane38 along with two arrows indicating the parameter-
space trajectories along which energies are computed in
this paper. At U ! 6.4t and carrier concentration n = 1
per site the approximation yields a paramagnetic (“Mott”)
insulating state which is at lower temperatures unstable to

antiferromagnetism. As electrons are removed the state evolves
to a conventional Fermi-liquid metal via an intermediate
“strange metal” phase characterized by a “pseudogap,” a
suppression of electronic density of states in the (0,π ) region
of the Brillouin zone.10,40,46–54 Superconductivity is found in
a strip,38 near the Mott insulator but separated from it by a
region of pseudogapped but nonsuperconducting states.53 At
carrier concentration n = 1 (vertical arrow) the ground state
of the model is believed to be antiferromagnetic at all U .
The n = 1 results were obtained by suppressing long-ranged
antiferromagnetic order (although short-ranged antiferromag-
netic correlations are still present) and are representative of
the properties of a metastable state. They are included because
the qualitative properties are seen to be the same as in the
doping-driven transition but the particle-hole symmetry at
n = 1 permits the acquisition of much higher quality data,
enabling a clearer view of the phenomena.

The two panels of Fig. 2 show the energy differences
obtained by subtracting the superconducting and normal-state
energies computed at inverse temperature β = 60/t along
the two parameter-space trajectories shown by the arrows in
Fig. 1, i.e., crossing the superconducting region by varying
the interaction strength or varying the carrier concentration.
The results obtained along the two trajectories are remarkably
similar, although the absence of a fermion sign problem at
n = 1 means we are able to obtain much better statistics in this
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FIG. 2. (Color online) Differences in total, kinetic, and potential
energies (per site, in units of hopping t) between normal and
superconducting states, obtained as described in the text at density
n = 1 varying interaction strength (upper panel) and as function of
density at fixed interaction strength U = 6t (lower panel).
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The high transition temperature superconductivity exhib-
ited by layered copper-oxide materials has been an important
topic in condensed-matter physics since its discovery in
1986.1 Broadly speaking, two views are currently held.
One is that despite the various anomalous features of the
materials the superconductivity may be understood in more
or less conventional Bardeen-Cooper-Schrieffer (BCS) terms
as arising from the exchange of a pairing (“glue”) particle,
most likely of magnetic origin.2 An alternate view is that
the superconductivity is an intrinsic property of a strongly
correlated state of matter that should not be interpreted as
arising from the exchange of a well-defined excitation.3

The issue may be cast in energetic terms. In the conventional
BCS view, the driving force for superconductivity is in
essence a reduction of potential energy: by forming the
superconducting state the electrons can take greater advantage
of an attractive term in an interparticle potential. Changing the
wave function to reduce the potential energy, however, costs
kinetic energy, so that in the weak-coupling limit the change
from normal to superconducting states leads to an increase in
the kinetic energy.4 In an alternate view,3 the driving force
for superconductivity is an optimization of kinetic energy:
by forming the superconducting state the electrons can move
more easily through the crystal despite their need to avoid
the other electrons. In this case going from the normal to
the superconducting state lowers the kinetic energy and one
expects that the potential energy increases.

The repulsive-U Hubbard model on the two-dimensional
square lattice is widely believed3,5,6 to contain the essential
physics of high-Tc copper-oxide superconductivity. It is
defined by the Hamiltonian

H =
∑

kσ

(εk − µ)c†kσ ckσ + U
∑

i

ni↑ni↓. (1)

Here i labels the sites in a lattice and k a momentum in the
corresponding Brillouin zone. The two-dimensional repulsive
(U > 0) version of the model has been shown rigorously to
have a dx2−y2 superconducting ground state in at least some
regions of the U,n phase diagram.7–9

FIG. 1. (Color online) Phase diagram of two-dimensional square
lattice Hubbard model in plane of density n and interaction strength
U/t at inverse temperature β = 60/t as obtained in eight-site
cluster dynamical mean-field theory. Mott insulator at half filling for
U/t ! 6.4 indicated by heavy bar (green online); superconducting
region indicated by circles (black online), pseudogapped but non-
superconducting region, diamonds (blue online) and Fermi-liquid
nonsuperconducting state by squares (yellow online). Boundary of
normal-state pseudogap, defined as in Ref. 10, indicated as dashed
line (purple online). Trajectories along which the energy is computed
are shown as arrows.

In this paper we investigate the electronic energy E = ⟨H ⟩,
decomposed into kinetic K and potential V terms as E =
K + V with

K =
∑

kσ

εk⟨c†kσ ckσ ⟩ = 2T
∑

k,n

(εk − µ)Tr[τ3G(k,ωn)], (2)

V = U
∑

i

⟨ni↑ni↓⟩ = 2T
∑

k,n

Tr[&(k,ωn)G(k,ωn)]. (3)

In the second equality we have used standard formulas to
reexpress the expectation values in terms of the Nambu
matrix Matsubara frequency electron Green function G and
self-energy &.

The energetics of superconductivity have been previously
studied. One important class of approaches has used variational
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The high transition temperature superconductivity exhib-
ited by layered copper-oxide materials has been an important
topic in condensed-matter physics since its discovery in
1986.1 Broadly speaking, two views are currently held.
One is that despite the various anomalous features of the
materials the superconductivity may be understood in more
or less conventional Bardeen-Cooper-Schrieffer (BCS) terms
as arising from the exchange of a pairing (“glue”) particle,
most likely of magnetic origin.2 An alternate view is that
the superconductivity is an intrinsic property of a strongly
correlated state of matter that should not be interpreted as
arising from the exchange of a well-defined excitation.3

The issue may be cast in energetic terms. In the conventional
BCS view, the driving force for superconductivity is in
essence a reduction of potential energy: by forming the
superconducting state the electrons can take greater advantage
of an attractive term in an interparticle potential. Changing the
wave function to reduce the potential energy, however, costs
kinetic energy, so that in the weak-coupling limit the change
from normal to superconducting states leads to an increase in
the kinetic energy.4 In an alternate view,3 the driving force
for superconductivity is an optimization of kinetic energy:
by forming the superconducting state the electrons can move
more easily through the crystal despite their need to avoid
the other electrons. In this case going from the normal to
the superconducting state lowers the kinetic energy and one
expects that the potential energy increases.

The repulsive-U Hubbard model on the two-dimensional
square lattice is widely believed3,5,6 to contain the essential
physics of high-Tc copper-oxide superconductivity. It is
defined by the Hamiltonian

H =
∑

kσ

(εk − µ)c†kσ ckσ + U
∑

i

ni↑ni↓. (1)

Here i labels the sites in a lattice and k a momentum in the
corresponding Brillouin zone. The two-dimensional repulsive
(U > 0) version of the model has been shown rigorously to
have a dx2−y2 superconducting ground state in at least some
regions of the U,n phase diagram.7–9

FIG. 1. (Color online) Phase diagram of two-dimensional square
lattice Hubbard model in plane of density n and interaction strength
U/t at inverse temperature β = 60/t as obtained in eight-site
cluster dynamical mean-field theory. Mott insulator at half filling for
U/t ! 6.4 indicated by heavy bar (green online); superconducting
region indicated by circles (black online), pseudogapped but non-
superconducting region, diamonds (blue online) and Fermi-liquid
nonsuperconducting state by squares (yellow online). Boundary of
normal-state pseudogap, defined as in Ref. 10, indicated as dashed
line (purple online). Trajectories along which the energy is computed
are shown as arrows.

In this paper we investigate the electronic energy E = ⟨H ⟩,
decomposed into kinetic K and potential V terms as E =
K + V with

K =
∑

kσ

εk⟨c†kσ ckσ ⟩ = 2T
∑

k,n

(εk − µ)Tr[τ3G(k,ωn)], (2)

V = U
∑

i

⟨ni↑ni↓⟩ = 2T
∑

k,n

Tr[&(k,ωn)G(k,ωn)]. (3)

In the second equality we have used standard formulas to
reexpress the expectation values in terms of the Nambu
matrix Matsubara frequency electron Green function G and
self-energy &.

The energetics of superconductivity have been previously
studied. One important class of approaches has used variational
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The high transition temperature superconductivity exhib-
ited by layered copper-oxide materials has been an important
topic in condensed-matter physics since its discovery in
1986.1 Broadly speaking, two views are currently held.
One is that despite the various anomalous features of the
materials the superconductivity may be understood in more
or less conventional Bardeen-Cooper-Schrieffer (BCS) terms
as arising from the exchange of a pairing (“glue”) particle,
most likely of magnetic origin.2 An alternate view is that
the superconductivity is an intrinsic property of a strongly
correlated state of matter that should not be interpreted as
arising from the exchange of a well-defined excitation.3

The issue may be cast in energetic terms. In the conventional
BCS view, the driving force for superconductivity is in
essence a reduction of potential energy: by forming the
superconducting state the electrons can take greater advantage
of an attractive term in an interparticle potential. Changing the
wave function to reduce the potential energy, however, costs
kinetic energy, so that in the weak-coupling limit the change
from normal to superconducting states leads to an increase in
the kinetic energy.4 In an alternate view,3 the driving force
for superconductivity is an optimization of kinetic energy:
by forming the superconducting state the electrons can move
more easily through the crystal despite their need to avoid
the other electrons. In this case going from the normal to
the superconducting state lowers the kinetic energy and one
expects that the potential energy increases.

The repulsive-U Hubbard model on the two-dimensional
square lattice is widely believed3,5,6 to contain the essential
physics of high-Tc copper-oxide superconductivity. It is
defined by the Hamiltonian

H =
∑

kσ

(εk − µ)c†kσ ckσ + U
∑

i

ni↑ni↓. (1)

Here i labels the sites in a lattice and k a momentum in the
corresponding Brillouin zone. The two-dimensional repulsive
(U > 0) version of the model has been shown rigorously to
have a dx2−y2 superconducting ground state in at least some
regions of the U,n phase diagram.7–9

FIG. 1. (Color online) Phase diagram of two-dimensional square
lattice Hubbard model in plane of density n and interaction strength
U/t at inverse temperature β = 60/t as obtained in eight-site
cluster dynamical mean-field theory. Mott insulator at half filling for
U/t ! 6.4 indicated by heavy bar (green online); superconducting
region indicated by circles (black online), pseudogapped but non-
superconducting region, diamonds (blue online) and Fermi-liquid
nonsuperconducting state by squares (yellow online). Boundary of
normal-state pseudogap, defined as in Ref. 10, indicated as dashed
line (purple online). Trajectories along which the energy is computed
are shown as arrows.

In this paper we investigate the electronic energy E = ⟨H ⟩,
decomposed into kinetic K and potential V terms as E =
K + V with

K =
∑

kσ

εk⟨c†kσ ckσ ⟩ = 2T
∑

k,n

(εk − µ)Tr[τ3G(k,ωn)], (2)

V = U
∑

i

⟨ni↑ni↓⟩ = 2T
∑

k,n

Tr[&(k,ωn)G(k,ωn)]. (3)

In the second equality we have used standard formulas to
reexpress the expectation values in terms of the Nambu
matrix Matsubara frequency electron Green function G and
self-energy &.

The energetics of superconductivity have been previously
studied. One important class of approaches has used variational
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The high transition temperature superconductivity exhib-
ited by layered copper-oxide materials has been an important
topic in condensed-matter physics since its discovery in
1986.1 Broadly speaking, two views are currently held.
One is that despite the various anomalous features of the
materials the superconductivity may be understood in more
or less conventional Bardeen-Cooper-Schrieffer (BCS) terms
as arising from the exchange of a pairing (“glue”) particle,
most likely of magnetic origin.2 An alternate view is that
the superconductivity is an intrinsic property of a strongly
correlated state of matter that should not be interpreted as
arising from the exchange of a well-defined excitation.3

The issue may be cast in energetic terms. In the conventional
BCS view, the driving force for superconductivity is in
essence a reduction of potential energy: by forming the
superconducting state the electrons can take greater advantage
of an attractive term in an interparticle potential. Changing the
wave function to reduce the potential energy, however, costs
kinetic energy, so that in the weak-coupling limit the change
from normal to superconducting states leads to an increase in
the kinetic energy.4 In an alternate view,3 the driving force
for superconductivity is an optimization of kinetic energy:
by forming the superconducting state the electrons can move
more easily through the crystal despite their need to avoid
the other electrons. In this case going from the normal to
the superconducting state lowers the kinetic energy and one
expects that the potential energy increases.

The repulsive-U Hubbard model on the two-dimensional
square lattice is widely believed3,5,6 to contain the essential
physics of high-Tc copper-oxide superconductivity. It is
defined by the Hamiltonian

H =
∑

kσ

(εk − µ)c†kσ ckσ + U
∑

i

ni↑ni↓. (1)

Here i labels the sites in a lattice and k a momentum in the
corresponding Brillouin zone. The two-dimensional repulsive
(U > 0) version of the model has been shown rigorously to
have a dx2−y2 superconducting ground state in at least some
regions of the U,n phase diagram.7–9

FIG. 1. (Color online) Phase diagram of two-dimensional square
lattice Hubbard model in plane of density n and interaction strength
U/t at inverse temperature β = 60/t as obtained in eight-site
cluster dynamical mean-field theory. Mott insulator at half filling for
U/t ! 6.4 indicated by heavy bar (green online); superconducting
region indicated by circles (black online), pseudogapped but non-
superconducting region, diamonds (blue online) and Fermi-liquid
nonsuperconducting state by squares (yellow online). Boundary of
normal-state pseudogap, defined as in Ref. 10, indicated as dashed
line (purple online). Trajectories along which the energy is computed
are shown as arrows.

In this paper we investigate the electronic energy E = ⟨H ⟩,
decomposed into kinetic K and potential V terms as E =
K + V with

K =
∑

kσ

εk⟨c†kσ ckσ ⟩ = 2T
∑

k,n

(εk − µ)Tr[τ3G(k,ωn)], (2)

V = U
∑

i

⟨ni↑ni↓⟩ = 2T
∑

k,n

Tr[&(k,ωn)G(k,ωn)]. (3)

In the second equality we have used standard formulas to
reexpress the expectation values in terms of the Nambu
matrix Matsubara frequency electron Green function G and
self-energy &.

The energetics of superconductivity have been previously
studied. One important class of approaches has used variational
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case. The condensation energy is of order 0.001t , although the
changes in kinetic and potential energy separately are typically
much larger, especially in the pseudogap regime.

For interactions or carrier concentrations smaller than
required to produce a normal-state pseudogap,10,40,49 the
energetics are consistent with the standard expectations of
weak-coupling superconductivity: as the material enters the
superconducting state the potential energy decreases and the
kinetic energy increases. The boundary of the normal-state
pseudogap marks a significant change in the energetics of
superconductivity: once the pseudogap regime is entered, the
kinetic energy decreases and the potential energy increases
on entering the superconducting state. Further, inside the
pseudogap regime the superconducting/normal changes in
potential and kinetic energy become much larger in magnitude,
showing that the onset of superconductivity leads to a
significant re-organization of the energetics of the pseudogap
states. The change in character of the superconductivity at the
pseudogap line is consistent with the finding of Yang et al.53

that the superconductivity exists in a dome with the maximal
transition temperature occurring where the superconducting
and pseudogap phase boundaries intersect. The change is also
consistent with the finding of Kyung et al.55 that the pseudogap
is associated with a decrease in the pairing potential.

Our results differ from previous dynamical mean field anal-
yses. Reference 56 (N = 4 study of the Hubbard model) found
that both at low and high doping superconductivity was associ-
ated with a decrease in kinetic energy, with negligible changes
in potential energy. Reference 57 (N = 4 study of the t-J
model, with an additional “EDMFT” approximation) found
that most of the energy gain on entering the superconducting
state came from changes in the interaction term, although the
behavior of the kinetic energy was different at large than at
small doping. Three possible origins for the discrepancy are
the use of the noncrossing approximation (“NCA”) impurity
solver in Refs. 56 and 57 rather than the numerically exact
CT-QMC method, the use of the N = 4 approximation, rather
than the N = 8 approximation used here, and the study of
the t-J rather than Hubbard model in Ref. 57. Singh58 has
questioned the relevance of computations based on the t-J
model, because of apparent violations of the virial theorem
which may be traced back to the fact that some parts of the
electron kinetic energy are included in the “J ” coupling.

The “potential-energy driven” nature of the superconductiv-
ity found at larger dopings and at weak couplings is consistent
with the notion that in these regimes the superconductivity
is relatively conventional. The change in energetics as the
pseudogap boundary is crossed suggests that at stronger
couplings or lower dopings the superconductivity becomes
unconventional. One influential model of unconventional
superconductivity is the resonating valence bond (RVB) idea of
Anderson3 which was motivated in part by the possibility that
the physics of the cuprates could be understood in terms of a
very-strong-coupling limit of the Hubbard model. There, con-
figurations with two electrons on a site could be projected out
so that the only important term in the energy was the kinetic-
energy term and superconductivity (and indeed all other
interesting physics) is necessarily “kinetic-energy driven.”

Anderson’s original RVB idea, and subsequent recognition
of an SU(2) symmetry in the RVB wave function which might
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FIG. 3. (Color online) Anomalous expectation value in sector
K = (0,π ) plotted against pairing field η at doping x = 0 for
interaction strengths indicated.

be weakly broken by doping or small finite U corrections59

implied that superconducting correlations were present (but
not active) in the Mott insulating state and the strongly
correlated but not superconducting state which separates the
superconducting and insulating regimes in Fig. 1. To test this
hypothesis we applied a pairing field ηK (c†K↑c

†
K↓ + cK↑cK↓)

in our calculations and computed the effect on the super-
conducting order parameter ⟨cK↑cK↓⟩. We expect that if a
near-SU(2) symmetry existed, then applying a small pairing
field to a state which is nonsuperconducting but is near the
phase boundary would provide a rapid increase in the pairing
amplitude, which would then saturate to a value characteristic
of the superconducting state. Figure 3 shows that this is not the
case. On the weak-coupling side (U = 4.2), applying a pairing
field leads to the behavior expected near a second-order phase
transition: a rapid increase in ⟨cc⟩ reflecting the enhanced
susceptibility, followed by a saturation to values similar to
those found in the nearby superconducting state. However, on
the strong-coupling side the situation is different. Just at the
phase boundary U = 6.0 the situation is similar to that found
at weak coupling, but for any larger U the ⟨cc⟩ vs η curve is
linear with small, weakly U -dependent slope. The similarity
of the U = 6.2 and 6.4 results, and the difference of both
of these to the U = 4.2 trace, indicates that precursor effects
are very weak as the superconducting phase is approached
from the pseudogap indicating that the pseudogap state has
no strong tendency towards superconductivity. We infer from
this calculation that the origin of the kinetic-energy driven
behavior is not a signature of pairing correlations pre-existing
in the wave function.

It is interesting to consider the normal-superconducting en-
ergy differences in the context of the energetics of the pseudo-
gap state itself. The two panels of Fig. 4 show the temperature
dependence of the kinetic energy computed for a relatively
weak coupling, U = 5.0t (lower panel) and relatively strong
coupling, U = 5.8t (upper panel). We see that in the weak-
coupling case, the kinetic energy decreases as the temperature
is lowered, and the onset of superconductivity reverses this
decrease, while in the strongly coupled case the kinetic
energy increases as temperature is lowered but the onset of
superconductivity again reverses the temperature dependence.
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case. The condensation energy is of order 0.001t , although the
changes in kinetic and potential energy separately are typically
much larger, especially in the pseudogap regime.

For interactions or carrier concentrations smaller than
required to produce a normal-state pseudogap,10,40,49 the
energetics are consistent with the standard expectations of
weak-coupling superconductivity: as the material enters the
superconducting state the potential energy decreases and the
kinetic energy increases. The boundary of the normal-state
pseudogap marks a significant change in the energetics of
superconductivity: once the pseudogap regime is entered, the
kinetic energy decreases and the potential energy increases
on entering the superconducting state. Further, inside the
pseudogap regime the superconducting/normal changes in
potential and kinetic energy become much larger in magnitude,
showing that the onset of superconductivity leads to a
significant re-organization of the energetics of the pseudogap
states. The change in character of the superconductivity at the
pseudogap line is consistent with the finding of Yang et al.53

that the superconductivity exists in a dome with the maximal
transition temperature occurring where the superconducting
and pseudogap phase boundaries intersect. The change is also
consistent with the finding of Kyung et al.55 that the pseudogap
is associated with a decrease in the pairing potential.

Our results differ from previous dynamical mean field anal-
yses. Reference 56 (N = 4 study of the Hubbard model) found
that both at low and high doping superconductivity was associ-
ated with a decrease in kinetic energy, with negligible changes
in potential energy. Reference 57 (N = 4 study of the t-J
model, with an additional “EDMFT” approximation) found
that most of the energy gain on entering the superconducting
state came from changes in the interaction term, although the
behavior of the kinetic energy was different at large than at
small doping. Three possible origins for the discrepancy are
the use of the noncrossing approximation (“NCA”) impurity
solver in Refs. 56 and 57 rather than the numerically exact
CT-QMC method, the use of the N = 4 approximation, rather
than the N = 8 approximation used here, and the study of
the t-J rather than Hubbard model in Ref. 57. Singh58 has
questioned the relevance of computations based on the t-J
model, because of apparent violations of the virial theorem
which may be traced back to the fact that some parts of the
electron kinetic energy are included in the “J ” coupling.

The “potential-energy driven” nature of the superconductiv-
ity found at larger dopings and at weak couplings is consistent
with the notion that in these regimes the superconductivity
is relatively conventional. The change in energetics as the
pseudogap boundary is crossed suggests that at stronger
couplings or lower dopings the superconductivity becomes
unconventional. One influential model of unconventional
superconductivity is the resonating valence bond (RVB) idea of
Anderson3 which was motivated in part by the possibility that
the physics of the cuprates could be understood in terms of a
very-strong-coupling limit of the Hubbard model. There, con-
figurations with two electrons on a site could be projected out
so that the only important term in the energy was the kinetic-
energy term and superconductivity (and indeed all other
interesting physics) is necessarily “kinetic-energy driven.”

Anderson’s original RVB idea, and subsequent recognition
of an SU(2) symmetry in the RVB wave function which might
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FIG. 3. (Color online) Anomalous expectation value in sector
K = (0,π ) plotted against pairing field η at doping x = 0 for
interaction strengths indicated.

be weakly broken by doping or small finite U corrections59

implied that superconducting correlations were present (but
not active) in the Mott insulating state and the strongly
correlated but not superconducting state which separates the
superconducting and insulating regimes in Fig. 1. To test this
hypothesis we applied a pairing field ηK (c†K↑c

†
K↓ + cK↑cK↓)

in our calculations and computed the effect on the super-
conducting order parameter ⟨cK↑cK↓⟩. We expect that if a
near-SU(2) symmetry existed, then applying a small pairing
field to a state which is nonsuperconducting but is near the
phase boundary would provide a rapid increase in the pairing
amplitude, which would then saturate to a value characteristic
of the superconducting state. Figure 3 shows that this is not the
case. On the weak-coupling side (U = 4.2), applying a pairing
field leads to the behavior expected near a second-order phase
transition: a rapid increase in ⟨cc⟩ reflecting the enhanced
susceptibility, followed by a saturation to values similar to
those found in the nearby superconducting state. However, on
the strong-coupling side the situation is different. Just at the
phase boundary U = 6.0 the situation is similar to that found
at weak coupling, but for any larger U the ⟨cc⟩ vs η curve is
linear with small, weakly U -dependent slope. The similarity
of the U = 6.2 and 6.4 results, and the difference of both
of these to the U = 4.2 trace, indicates that precursor effects
are very weak as the superconducting phase is approached
from the pseudogap indicating that the pseudogap state has
no strong tendency towards superconductivity. We infer from
this calculation that the origin of the kinetic-energy driven
behavior is not a signature of pairing correlations pre-existing
in the wave function.

It is interesting to consider the normal-superconducting en-
ergy differences in the context of the energetics of the pseudo-
gap state itself. The two panels of Fig. 4 show the temperature
dependence of the kinetic energy computed for a relatively
weak coupling, U = 5.0t (lower panel) and relatively strong
coupling, U = 5.8t (upper panel). We see that in the weak-
coupling case, the kinetic energy decreases as the temperature
is lowered, and the onset of superconductivity reverses this
decrease, while in the strongly coupled case the kinetic
energy increases as temperature is lowered but the onset of
superconductivity again reverses the temperature dependence.
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Analytic continuation of self-energy
• Matsubara self-energy:

⌃(k, i!n) =

✓
⌃N (k, i!n) ⌃A(k, i!n)
⌃A(k, i!n) �⌃N (k,�i!n)

◆

⌃N,A(z) =

Z
dx

⇡

Im⌃N,A(x)

z � x

.

• Real frequency self-energy:

• Inversion of this kernel is ill conditioned, noise in data is amplified. Perform ‘maximum 
entropy’ procedure.

• Maximum entropy requires Im Sigma to be of the same sign for all frequencies. OK for 
normal components.

Jarrell, Gubernatis, Physics Reports 3, 133 (1996)

Wang et al., Phys. Rev. B 80, 045101 (2009)

Emanuel Gull and Andrew J. Millis, arXiv:1407.0704



Analytic continuation of self energies

• Analytic continuation of normal part of superconducting antinodal self-energy for different 
interactions at half-filling (metastable superconducting state). 

• U=5: ‘weak coupling’ state!
• U=5.8: pseudogap state  

 

• Different methods of analytic continuation (same input data) described by different line 
shapes. 

• Normal part of self-energy shows narrow peak at low energy & broad higher frequency 
maximum

0 5 10 15
ω [t]

0

0.5

1

1.5

2

2.5
Im

 Σ
N

(ω
) 

[t
] From Σ

N

From Σ
pm

U=5.0

0 5 10 15
ω [t]

0

0.5

1

1.5

2

2.5
U=5.5

0 5 10 15
ω [t]

0

0.5

1

1.5

2

2.5
U=5.8

Emanuel Gull and Andrew J. Millis, arXiv:1407.0704



Analytic continuation of self-energy

⌃N,A(z) =

Z
dx

⇡

Im⌃N,A(x)

z � x

.

• Modified continuation kernel takes into account odd frequency of anomalous self energy. 
Still no guarantee for positivity of

• Basis transform to a plus/minus basis guarantees positivity for the half-filled case

• Anomalous self-energy is an odd function of frequency: not a positive function – no 
maxent possible

⌃A(i!n) =

Z
dx

⇡

x

i!n � x

✓
Im⌃A(x)

x

◆

Im⌃A(!)/!

c±k� =
⇣
c†k� ± c�k,��

⌘
/
p
2

G± =

✓
G�1
0 (z)� ⌃+(z) 0

0 G�1
0 (z)� ⌃�(z)

◆�1

• Maxent possible for half filled case. Away from half filling: negative features in +/- basis in 
principle possible but not observed in Padé; Maxent consistent with positive Im⌃A(!)/!

Emanuel Gull and Andrew J. Millis, arXiv:1407.0704



Analytic continuation of self-energy

Three maxent procedures with different uncertainties. Half filled (metastable) case.!
Peak at relatively low frequencies, followed by broad normal state features.!
No negative component of anomalous self-energy found.
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Gap function
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Gap function



Gap function
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Comparison to experiment

• S. Dal Conte et al., Science 30, 1600 (2012): Disentangling the Electronic and Phononic 
Glue in a High-Tc Superconductor: !

• Measurement of different contributions to the gap function using nonequilibrium optical 
spectroscopy with femtosecond time resolution and ~10 meV energy resolution.!

• Electronic contribution (red) to gap function.
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Brief conclusion

Results from cluster DMFT (coarse grained self-energy) obtained on 8-site clusters.!

Simulations performed inside the superconducting state (Nambu formalism). Monte 
Carlo data analytically continued to real axis.!

Anomalous self energy shows structure only on low frequencies (consistent with 
single peak)!

Gap function shows structure at low frequencies (t ~ 0.25) up to t ~ 1, most of the weight 
concentrated at low frequencies.!

Low frequency structure expected from low-frequency collective excitations, for 
example spin fluctuations.
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Experiments: Momentum Space Differentiation

Angle dependent magneto-resistance:

French, Analytis, Carrington, Balicas, Hussey: 
NJP 11, 05595 (2009)

4

Figure 1. For caption see the following page.

New Journal of Physics 11 (2009) 055057 (http://www.njp.org/)

Data analysis:
⇢(T ) = A + BT + CT 2

Angle dependent analysis:
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(middle panel) scattering rates determined from the ADMR measurements
shown in figure 1. NP15K refers to the sample whose ADMR were measured at
a single azimuthal angle [11]. The dashed lines in the top and middle panels are
fits to A + CT 2 and A + BT + CT 2, respectively. The insets in each panel depict
the Fermi surface (as red solid lines) and the corresponding scattering rates (as
black dashed lines. Bottom panel: components of �aniso(T ) (black long-dashed
lines and green short-dashed lines) and �iso(T ) (orange dots) for Tl15sK.

description of �aniso(T ) over the full temperature range studied, as indicated by the dashed lines
in the lower panel. This additional T 2 term in �aniso(T ) was not picked out in the original lower
temperature measurements [11] as its contribution to �aniso(T ) was too small to be significant.
The relative magnitudes of the two components of �aniso(T ) are plotted for Tl15K in the bottom
panel of figure 3 along with �iso(T ). There is roughly 60% anisotropy in the T 2 scattering
rate within the basal plane, comparable to the variation in the density of states [17]. While
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panel of figure 3 along with �iso(T ). There is roughly 60% anisotropy in the T 2 scattering
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Anisotropic component of scattering rate: maximal 
near antinodal point, minimal near nodal point.

Momentum space differentiation!

T
Overdoped Tl2201 / ADMR



Isotropic Fermi Liquid regime

Momentum Space 
Differentiation

Red: Nodal scattering rates!
Blue: Antinodal scattering rates

Momentum space differentiation (n ~ 0.8): Nodal scattering rate vanishing more rapidly 
than antinodal scattering rate, ~ linear behavior (slower than T^2) 
Isotropic Fermi Liquid regime (n ~ 0.7): Nodal and Antinodal scattering rate identical, T^2

Momentum Space Differentiation
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Similar to anisotropic component observed in Angle-
Dependent Magneto-Resistance

French, Analytis, Carrington, Balicas, Hussey: NJP 11, 05595 (2009)

T

which provide access to this sector!. These are the two sec-
tors which contain the Fermi surface and for which !!"K ,0!
has meaning as a scattering rate. Comparison of electron and
hole dopings shows that while momentum-space differentia-
tion sets in at about the same absolute value of doping in the
two cases, the degree of differentiation between sectors
"0,"! and "" /2," /2! is greater on the hole-doped side than
on the electron-doped side.

We turn now to a more detailed examination of results
from the 8-site cluster, which is large enough allow a direct
comparison of the nodal and antinodal regions of the Fermi
surface, but is small enough to allow detailed computations
down to relatively low temperatures. The two panels of Fig.
10 show !!"K ,0! and the quasiparticle weight/velocity
renormalization ZK for the nodal K= "" /2," /2! and antin-
odal K= "" ,0! sectors as a function of doping at a relatively
low and a relatively high temperature.

Comparison of the two panels of Fig. 10 shows that the
momentum-space differentiation is marked primarily by a
variation in scattering rate. As doping is reduced, the Fermi-
surface scattering rates increase rapidly and a marked differ-
ence between the two Fermi surface sectors develops with
the antinodal sector K= "" ,0! characterized by a much more
rapidly growing scattering rate. Further, the scattering rates
exhibit a pronounced particle-hole asymmetry. However,
while the inverse mass enhancement/velocity renormaliza-
tion ZK decreases as doping is decreased, the variation with
doping is much less dramatic and, interestingly, there is very
little particle-hole asymmetry or difference between the two
momentum sectors. We also note that the nodal quasiparticle
residue Z""/2,"/2! appears to extrapolate to a nonzero value at
n=1. "A different result was found using self-energy interpo-
lations in superconducting state CDMFT calculations on
4-site clusters.58,59! This is inconsistent with the Brinkman-
Rice theory but qualitatively consistent with data on high-Tc
materials, where photoemission measurements indicate a
zone-diagonal quasiparticle velocity which is only weakly
doping dependent.13 "Very recent measurements indicate that
if the velocity is measured on very low scales, below the
resolution of the numerics in this paper or of previous pho-
toemission data a stronger doping dependence of the velocity
is found.60!

Figure 11 presents the temperature dependence of the
nodal and antinodal scattering rates obtained for the 8-site
cluster for selected densities. To highlight the temperature
dependence we plot !! /T. While the temperature range ac-
cessible to us is too limited to establish any specific form of
temperature dependence it is clear that at the higher doping
isotropic Fermi-liquid regime "n=0.70!, the scattering rates
drop faster than linearly at low T while at the lower doping
"n=0.80; momentum-differentiation regime! the two sectors
have different temperature dependence at low temperature
with the nodal sector scattering rate vanishing more rapidly
than T at low T and the antinodal rate vanishing less rapidly.
At the intermediate doping n=0.75 on the boundary between
the two regimes the behavior is intermediate. These features
are in qualitative agreement with the momentum-space varia-
tion in the electronic mean free path inferred from angular-
dependent magnetoresistance experiments.7,8 For highly
overdoped cuprates these experiments reveal a scattering rate
which is reasonably isotropic around the Fermi surface and
exhibits a relatively conventional temperature dependence.
Below a critical doping a momentum-space differentiation
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