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Roadmap to Exascale

(architectural trends)
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Dennard scaling law
(downscaling)
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Increase the number of cores
to maintain the
architectures evolution
on the Moore’s law
- Now, power and/or heat generation are the
limiting factors of the down-scaling ..
The power crisis!
- Supply voltage reduction is becoming difficult,
because Vth cannot be decreased any more, Prog rammi ng crisis!
as described later.
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- Growth rate in clock frequency and chip area
becomes smaller.



Number of transistors on
an integrated circuit

Moore’s Law

Number of transistors
per chip double every The true it double
18 month every 24 month
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The silicon lattice

0.54 nm

Si lattice

50 atoms!

There will be still 4~6 cycles (or technology generations) left until
we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit, in some year between 2020-30 (H. Iwai, IWJT2008).
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Amdahl's law

upper limit for the scalability of parallel applications
determined by the fraction of the overall execution time spent in non-

scalable operations (Amdahl's law).

maximum speedup tends to
1/(1-P)
P= parallel fraction

Bl serial

1 Parallel 1000000 core

Walltime

P =0.999999

serial fraction= 0.000001

MNepus
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HPC trends

(constrained by the three law)

Peak Performance

FPU Performance

Number of FPUs

App. Parallelism
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gigaflops

109

Serial fraction
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Moore law opportunity

Dennard law

Moore + Dennard

Amdahl's law

challenge



Architecture toward exascale
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Single throughput
thread perf. ﬁ

OpenPower
L Nvidia GPU
bottleneck AMD APU
ARM Big-Little

Photonic -> platform flexibility

TSV -> stacking KNL

Active memory
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K20 nVIDIA GPU

Memory Controller Memory Controller Memory Controller
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15 SMX Streaming Multiprocessors



SMX
Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
Dispatch Dispatch Dispatch Dispatch (ELEI Dispatch Dispatch Dispatch
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Register File (65,536 x 32-bit)
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32 load and store units

g
?

4 warp scheduler
(each warp contains 32 parallel
Threads)

2 indipendent instruction per warp
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64 KB Shared Memory / L1 Cache
48 KB Read-Only Data Cache
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Accelerator/GPGPU
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CUDA sample

void CPUCode( int* inputl, int* input2, int* output, int length) {
for ( int i = 0; i < length; ++i ) {
output[ i ] = inputl[ i ] + input2[ i ];

int*input2, int* output, int length) {

__global_ void GPUCode( int* inputl
blockIdx.x + threadIdx.x;

int idx = blockDim.x
if ( idx < length )
output[ idx ]

I~ *~

inputl[ idx ] + input2[ idx ];

Each thread execute one loop iteration



Intel MIC

Up to 61 Intel® Architecture cores

1.1 GHz

244 threads

Up to 8 GB memory

up to 352 GB/s bandwidth

512-bit SIMD instructions

Linux* operating system, IP addressable

Standard programming languages and tools

Over 1 TeraFlop/s double precision peak performance

Intel® MIC Architecture:
An Intel Co-Processor Architecture

VECTOR VECTOR VECTOR
A CORE IACORE  ,,, | IACORE

INTERPROCESSOR NETWORK

COHERENT COHERENT COHERENT COHERENT
CACHE CACHE CACHE CACHE
e

COHERENT COHERENT COHERENT COHERENT
CACHE CACHE CACHE CACHE

INTERPROCESSOR NETWORK

FIXED FUNCTION LOGIC
MEMORY and /0 INTERFACES

VECTOR VECTOR VECTOR VECTOR
|A CORE IA CORE el 1A CORE 1A CORE

Many cores and many, many more threads

Standard IA programming and memory model

intel



MIC Architecture

Cores: 61 cores, at 1.1 GHz
in-order, support 4 threads
512 bit Vector Processing Unit
32 native registers

8 memory controllers

16-channel GDDR5 MC
PCle GEN2 Or€
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Distributed tag directory ;
to uniquely map physical
addresses
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High-speed bi-directional
ring interconnect
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Reliability Features
Parity on L1 Cache, ECC on memory

Fully coherent L2 Cache

CRC on memory |0, CAP on memory 10



Core Architecture

e 60+ in-order, low-power Intel®
Instruction Decode Architecture cores in a ring interconnect
e Two pipelines
- Scalar Unit based on Pentium® processors
- Dual issue with scalar instructions
- Pipelined one-per-clock scalar throughput

Scalar Vector . .
SEEAE B EEEE e SIMD Vector Processing Engine

! ! e 4 hardware threads per core
32K L1 I-cache . .
32K L1 D-cache - 4 clock latency, hidden by round-robin
! scheduling of threads
512K L2 Cache - Cannot issue back-to-back inst in same
thread

I e Coherent 512 KB L2 Cache per core




Intel Vector Units
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Memory

Today (at 40nm) moving 3 64bit operands to compute a 64bit floating-point FMA
takes 4.7x the energy with respect to the FMA operation itself

Extrapolating down to 10nm integration, the energy required to move date
Becomes 100x !

We need locality! ‘ Fewer memory per core



Chip Architecture

Strongly market driven

Intel

ARM

NVIDIA

Power

AMD

L

‘ Mobile, Tv set, Screens
Video/lImage processing

New arch to compete with ARM
Less Xeon, but PHI

Main focus on low power mobile chip
Qualcomm, Texas inst. , Nvidia, ST, ecc
new HPC market, server maket

GPU alone will not last long
ARM+GPU, Power+GPU

Embedded market
Power+GPU, only chance for HPC

Console market
Still some chance for HPC



System architecture

still two models

System attributes
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Total Node 1.5GB/s | 150 GB/sec | 1 TB/sec
Interconnect BW

Hybrid, but...

Homogeneus, but...

2010

- symmetric
—<
asymmetric
(a la deep)
SoC
—
Commodity

- (a la Mont-Blac)

1TF 10TF
0.4 TB/sec 4 TB/sec
0(1,000) 0(10,000)
1,000,000 100,000
250 GB/sec 2 TB/sec
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/O Challenges

Today Tomorrow
100 clients 10K clients
1000 core per client 100K core per clients
3PByte 1Exabyte
3K Disks 100K Disks
100 Gbyte/sec 100TByte/sec
8MByte blocks 1Gbyte blocks
Parallel Filesystem Parallel Filesystem
One Tier architecture Multi Tier architecture

1/0 subsystem of high performance computers are still deployed using spinning disks, with their mechanical limitation (spinning
speed cannot grow above a certain regime, above which the vibration cannot be controlled), and like for the DRAM they eat

energy even if their state is not changed. Solid state technology appear to be a possible alternative, but costs do not allow to
implement data storage systems of the same size. Probably some hierarchical solutions can exploit both technology, but this do
not solve the problem of having spinning disks spinning for nothing.

PRACE CINECA
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Storage I/O

The I/0O subsystem is not keeping
the pace with CPU

Checkpointing will not be possible
Reduce I/0

On the fly analysis and statistics
Disk only for archiving

Scratch on non volatile memory
(“close to RAM”)

egisters

(1 cycle)
Caches
(2-10 cycles)
Memory
(100 cycles)

Shared memory
programming

Message passing
programming

Latency Gap
Spinning Disks e
(10,000,000 cycles) is
CINECA
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Today

160K cores, 96 I/O clients, 24 1/O servers, 3 RAID controllers
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IMPORTANT: 1/O subsystem has its own parallelism!



Today-Tomorrow

RAID
Controller

1M cores, 1000 1/O clients, 100 I/O servers, 10 RAID FLASH/DISK controllers
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Tomorrow
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1G cores, 10K NVRAM nodes, 1000 1/O clients, 100 I/O servers, 10 RAID controllers
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Energy Awareness/Efficiency
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EURORA
PRACE Prototype experience

Address Today HPC Constraints: 3,200MOPS/W — 30KW
Flops/Watt,
Flops/m2,
Flops/Dollar.
Efficient Cooling Technology:
hot water cooling (free cooling);
measure power efficiency, evaluate (PUE & TCO).
Improve Application Performances:
at the same rate as in the past (~Moore’s Law);
new programming models.

Evaluate Hybrid (accelerated) Technology:
Intel Xeon Phi;
NVIDIA Kepler.

Custom Interconnection Technology:
3D Torus network (FPGA);
evaluation of accelerator-to-accelerator
communications.

64 compute cards

128 Xeon SandyBridge (2.1GHz, 95W and 3.1GHz, 150W)
16GByte DDR3 1600MHz per node

160GByte SSD per node

1 FPGA (Altera Stratix V) per node

IB QDR interconnect #1 in The Green500 List June

3D Torus interconnect
128 Accelerator cards (NVIDA K20 and INTEL PHI) 201 3




Monitoring Infrastructure

Data collection “front-end”
powerDAM (LRZ)
Monitoring, Energy accounting

Matlab
Modelling and feature extraction

Data collection “back-end”
Node stats (Intel CPUs, Intel MIC, NVidia GPUs)

12-20ms overhead, update every 5s.

Rack stats (Power Distribution Unit)
Room stats (Cooling and power supply)
Job stats (PBS)

Accounting

SRIT>
( 4 92) ALMA MATER STUDIORUM
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Eurora At Work
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QE (Al203 small benchmark)
Energy to solution — as a function of the clock

%10 Energy Map Benchmark Cavazzoni Sho

Energy Consumed

Frequency



Ets (KJ)
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Quantum ESPRESSO Energy to Solution (PHI)
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Time-to-solution (right) and Energy-to-solution (left) compared
between Xeon Phi and CPU only versions of QE on a single
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