
Introduction to Earth System Modeling
Framework (ESMF): An Atmosphere-Ocean

Modeling Application Example���
���

Ufuk Turuncoglu (1,2)���
���
���
���

 (1) Informatics Institute, ���
Computational Science and Engineering, ���

ITU, Turkey���
(2) ESP Section, ���

ICTP, Italy	

D
ev

el
op

er
 S

ch
oo

l f
or

 H
PC

 a
pp

lic
at

io
ns

 in
 E

ar
th

 S
ci

en
ce

s,
10

-1
2

N
ov

. 2
01

4	

Earth System Modeling Framework (ESMF)	

•  Complete set of Fortran interface and some C/C++ interfaces	

•  Open source project:���

http://www.earthsystemmodeling.org���
http://sourceforge.net/projects/esmf���
http://sourceforge.net/projects/esmfcontrib	

•  Well documented and support	

•  Well tested (nightly builds on different OS, Architecture,
Compiler and MPI versions) and very portable	

•  Interpolation capability also available via Python (ESMP) ���
and NCL (NCAR Command Language)	

•  New layer to simplify model coupling: The National Unified
Operational Prediction Capability (NUOPC)���
https://www.earthsystemcog.org/projects/nuopc/	

ESMF Architecture	

•  There are two main type of classes	

–  Superstructure	

•  Components (gridded and coupler) + States	

–  Infrastructure	

•  Data Structures (Array, Field, Grid, Bundle)	

•  Utilities (Clock, VM, Config etc.)	

ESMF “sandwich” ���
architecture	

Superstructure	

•  Components	

–  Gridded – describes a user component (atm, ocn, etc.) that takes

one import and one export State. ���
In general, the fields within import and export State will use same
discrete grid.	

–  Coupler – it takes one or more import States as input and applies
spatial/temporal interpolation and/or extrapolation onto one or
more output export States.���
In general, import and export States are in different discrete grid.	

•  Different combination of gridded and coupler components:	

COMP	

import	
 export	

Superstructure	

•  It also contains methods related with	

–  State	

–  Web services	

•  States	

–  It contains the data and metadata to be transferred between
ESMF Components.	

–  There are two types of States, import and export. 	

–  An import State contains data that is necessary for a
Gridded Component or Coupler Component to execute, 	

–  and an export State contains the data that a Gridded
Component or Coupler Component can make available.	

–  States can contain Arrays, ArrayBundles, Fields, FieldBundles,
and other States (in a specific VM).	

Infrastructure	

•  Fields and Grids	

–  Array and Field are used to store data	

–  Array contains a data pointer along with information about data
type, precision and dimension	

–  Field holds model and/or observational data with its underlying
grid or set of spatial locations	

–  Bundles are the collections of Arrays (ArrayBundle) or Fields
(FieldBundle)	

–  Grid definition (Grid, Mesh and XGrid)	

•  Utilities	

–  They are a set of tools for quickly assembling modeling

applications	

•  Attribute, Time Management (+Clock), Config, LogErr, DELayout, ���

VM and I/O Utilities	

Parallelization	

•  Sequential (Consecutive) vs. Concurrent	

Sequential 	

Concurrent	

Parallelization	

•  Abstraction	

Persistent Execution ���

Threads (PETs)	

Processing���
Element	

smallest	

physical 	

processing 	

unit	

Code Adaptation	

	

	

PARSE	

Prepare 	

Adapt	

Register	

Schedule	

Execute	

Preparing	

1.  Prepare user code	

–  Decide on components and model design	

–  Decide on coupling (or exchange) fields	

–  Decide on control flow (order of the execution of components)	

–  Split component code into initialize, run and finalize sections	

Preparing	

•  Split model code: initialization, run and finalize (i.e. RegCM)	

reads global namelist, read ICBC, ���
initialize model and setup output files	

run model between given interval	

get/put routines will retrieve/send data 	

close files, clean memory and kill processes	

Adapting 	

2.  Adapt data structures	

–  Wrap component grid in Grid or Xgrid object	

–  Wrap data structures in Array and/or Field objects	

–  Wrap time information in Clock object	

ESMF_DistGrid	

ESMF_GridCreate	

ESMF_GridAddCoord	

ESMF_GridAddItem	

Retrieve	
 Ptr	
 and	
 Fill	

x N (stagger)	

x N (mask + area)	

defines domain ���
decomposition	

all coord and item	

or
de

r	

ESMF_FieldCreate	

Retrieve	
 Ptr	
 and	
 Fill	

Add	
 to	
 State	

stagger + type	

ESMF_Clock	

reference	

start	

stop	

calendar	

time step	

Adapting 	

•  Arrays vs. Fields	

–  Arrays represent user data in index space. They don’t have coordinate

information. So, Arrays can not be used to calculate interpolation
weights.	

–  To do interpolation, user need to supply interpolation weights externally
and SMM can be applied to Array.	

–  Field object includes coordinates. So, it represents user data in physical
space.	

•  Grid Definition	

–  The most important part of the model adaptation.	

–  Be careful about the definition of halo or ghost regions	

–  ESMF uses right-hand-coordinate system and smallest stride to the first
dimension. The order of dimension can be reversed some times.	

–  The actual grid definition might be check by ESMF_GridWriteVTK. It
creates a set of VTK files (separated for each PET and read by Visit)	

Registering	

3.  Register user methods	

–  Attach user code methods to the framework through

registration calls	

–  Create register routine for each component (gridded or coupler)	

–  The register routine attaches initialization, run and finalize
routines. By this way, ESMF know the routines to control ESMF_
[Grid | Cpl]CompSetEntryPoint	

–  Then register routines called in main application to allow ESMF
take control of the model components. ���
ESMF_[Grid | Cpl]CompSetServices	

•  Then, the registered model components can be initialized	

–  Definition of grids	

–  States (import and export)	

–  Clocks	

Scheduling	

4.  Schedule, synchronize and send the data	

–  The scheduling, synchronization and data exchange can be

controlled via coupler (optional)	

–  In this case, all the data redirected by coupler / driver. There is no

direct interaction among the components.	

–  Regridding, SMM, data redistribution 	

–  Different scheduling options exists	

•  Explicit	

•  Semi-implicit	

•  Implicit	

Executing	

5.  Execute	

–  Run components using ESMF driver	

ESMF / NUOPC Layer	

•  National Unified Operational Prediction Capability 	

–  Consortium of U.S. operational weather and water prediction

centers	

–  NOAA, Navy, Air Force, NASA, and other associated modeling

groups 	

–  http://earthsystemcog.org/projects/nuopc/	

•  It is a software layer implemented on top of ESMF	

•  It defines generic components (Model, Mediator, Connector and
Driver). The generic components can be customized by attachable
methods.	

•  It contains utility methods for common tasks	

•  It contains Field dictionary (standard names and units)	

•  It is distributed with ESMF	

ESMF / NUOPC Layer	

•  Building Blocks	

•  Model	

–  Typically implements a specific physical ���
domain (i.e. atmosphere, ocean and ice)	

•  Connector	

–  Connects pairs of components in one ���

direction, e.g. Model to/from Model, or ���
Model to/from Mediator	

–  Executes simple transforms (Regrid or Redist)	

•  Mediator	

–  Used for custom coupling code (flux calculations, averaging, etc.)
between Models 	

•  Driver	

–  Provides a harness for Models, Mediators, and Connectors.	

–  Coordinates initialize and run sequences. 	

ESMF / NUOPC Layer	

•  Architectural Options	

Test Case	

•  The code that is used in the test case are extracted from
RegESM (Regional Earth System Model)	

•  The component codes are removed to have a independent,
easy to use and understand test code	

•  It demonstrates:	

–  Creation and running components (gridded + coupler)	

–  Creating grids via SCRIP formatted netCDF files	

–  Generation of routehandles (online)	

•  Main component of the regridding and stores weight matrices	

•  Components need to different routhandle for different grids and
interpolation types	

–  Regridding using routehandles	

•  Two step interpolation to fix land-sea mask mismatch	

•  Interpolation (bilinear) + Extrapolation (nearest-neighbor)	

Test Case Configuration	

•  Data exchange between two components	

•  There are two direction:���
ATM to OCN and ���
OCN to ATM	

•  10 km ATM model can be���
used by generating SCRIP formatted files	

0	

3	

4	

7	

1	

2	

5	

6	

0	

4	

2	

6	

1	

5	

3	

7	

RegCM 50km ���
MED Grid	

ROMS 8km ���
Black Sea Grid	

Exchange Field	

•  Input field from standard SCRIP tests fields	

•  Pseudo spherical harmonics (L=32, M=16)	

•  It is good to have a field that has a analytical solution. The
interpolation error can be estimated in this case.	

ht
tp

://
oc

ea
ns

11
.la

nl
.g

ov
/t

ra
c/

SC
R

IP
	

f = 2+ sin16 (2!)cos(16") ! = lat, " = lon

•  Regridding is performed���
only over sea	

•  In this case, ATM���
component will send���
masked data 	

Description of Test Code	

•  Get the code	

	

•  The list of the files	

ESMF_netcdf_read.f	

Makefile	

fix.sh	

main.F90	

main.job	

namelist.rc	

proc	

user_coupler.F90	

user_model1.F90	

user_model2.F90	

Gridded components code (model1: ATM, model2: OCN)	

Coupler component code (field interpolation)	

Directory to create SCRIP definition of grids	

Reads components grid information (from netCDF)	

Compiles test case	

Adds coordinate information to output of the test app	

Main program (creates components and trigger them)	

Job submission script	

Configuration file (decomposition, files etc.)	

https://www.dropbox.com/s/hwfk4b39bxyovll/smr2613.tar.gz?dl=0	

	

Login and Environment Setup	

•  Login to Argo cluster	

•  Load required modules	

	

•  Still need to define a set of environment variables	

	

module use-append /opt/smr2613/modules/usermodule	

module purge	

module load esmf-6.3.0r	

module load ncl-6.2.1-gcc-4.4.7	

module load pnedcdf-1.3.1	

module load zlib-1.2.8	

module load hdf5-1.8.11-intel	

module load netcdf-4.3.0	

module load xerces-3.1.1	

setenv ESMF_LIB "${ESMF_INSTALL_PREFIX}/lib/lib${ESMF_BOPT}/${ESMF_OS}.$
{ESMF_COMPILER}.${ESMF_ABI}.${ESMF_COMM}.${ESMF_SITE}"	

setenv ESMFMKFILE "${ESMF_LIB}/esmf.mk"	

setenv LD_LIBRARY_PATH ${ESMF_LIB}:${LD_LIBRARY_PATH}	

setenv PATH ${ESMF_INSTALL_PREFIX}/bin/bin${ESMF_BOPT}/${ESMF_OS}.${ESMF_COMPILER}.$
{ESMF_ABI}.${ESMF_COMM}.${ESMF_SITE}:${PATH}	

in csh shell	

Running Test Code	

•  Run “make” command to install executable	

–  Make clean can be used to clean files	

•  Following variables are used from ESMF configuration	

–  $(ESMFMKFILE)	

–  $(ESMF_F90COMPILER)	

–  $(ESMF_F90LINKPATHS)	

–  $(ESMF_F90ESMFLINKLIBS)	

•  The code is designed to run in parallel	

•  main.job script can be used to submit job on Argo (queue?)	

•  Don’t forget to modify the job script	

–  Queue which is dedicated to HPC school	

–  The working directory (just before “ulimit -s unlimited” command)	

•  Submit job to cluster : qsub main.job	

Analyzing Output	

•  There are four group of files	

–  *.vtk files store information about grid definition for each

component (each PET has its own part)	

–  gcomp*.nc files have initial data stored by components	

–  remap*.nc files are the fields after interpolation	

•  1: interpolation, 	

•  2: interpolation + extrapolation	

•  forward: ATM to OCN	

•  backward: OCN to ATM	

–  mask*.nc files store mask information (created by
“UTIL_FindUnmapped” subroutine in user_coupler.F90)	

•  0: land	

•  98: mapped grid points (filled just after bilinear interpolation)	

•  99: unmapped grid points (needs extrapolation)	

•  Two step interpolation ���
(i.e. interpolation over ocean)	

Unmatched Land-sea Masks	

STEP 2	

2.  Use result of previous step, ���

interpolate data from OCN to OCN ���
from mapped grid points ���
to unmapped ones using���
nearest-neighbor type regridding	

3.  Merge results of 1 and 2 to���
create filled field	

+	

STEP 3	

=	

•  Still has problem in some
applications (sharp gradient in
some cases) but used in RegESM	

•  Other extrapolation techniques?	

T
ha

nk
s

to
 E

SM
F

G
ro

up
 (

es
pe

ci
al

ly
 t

o
Bo

b
O

eh
m

ke
)

fo
r

th
ei

r
su

pp
or

t
an

d
he

lp
	

STEP 1	

1.  Interpolate from ATM to OCN���
using bilinear interpolation. Use ���
only sea grid points	

mapped	

unmapped	

Interpolation Error	

•  Two step interpolation (ATM to OCN)	

Min: -0.207���
Max: 0.071	

Min: -0.025���
Max: 0.014	

M
ED

 5
0k

m
	

T
R

 1
0k

m
	

Relative Error = (Mod/Obs)-1	

•  Run code	

•  Add coordinate data by using ���

./fix.sh	

•  Copy plot_err.ncl script from

proc/ directory and run	

	

Questions!	

	

Contact:	

u.utku.turuncoglu@be.itu.edu.tr	

	

