HPC for climate modelling in Europe: ENES, IS-ENES and the OASIS coupler

S. Valcke, L. Coquart, A. Craig, Y. Boumediene

Part I:

- The European Network for Earth System modelling ENES
- The IS-ENES EU project: infrastructure for ENES
- 2012-2022 Infrastructure Strategy for ENES: HPC, data, models

Part II

- Code coupling strategies in climate modelling
- OASIS: historical overview, user community
- OASIS3-MCT: use, communication, performances
- Conclusions and perspectives

ENES: European Network for Earth System modelling

A network of European groups in climate/Earth system modelling launched in 2001 (MoU) gathering ~50 groups from academic, public and industrial world http://enes.org

> discuss strategy to accelerate progress in climate modelling and understanding

IS-ENES EU projects : InfraStructure for **ENES** http://is.enes.org

Phase1 (7.6 M€) 2009-13: 18 partners; Phase2 (8 M€) 2013-17: 23 partners

METEO FRANCE

Meteorological Institute

IS-ENES: Infrastructure for ENES

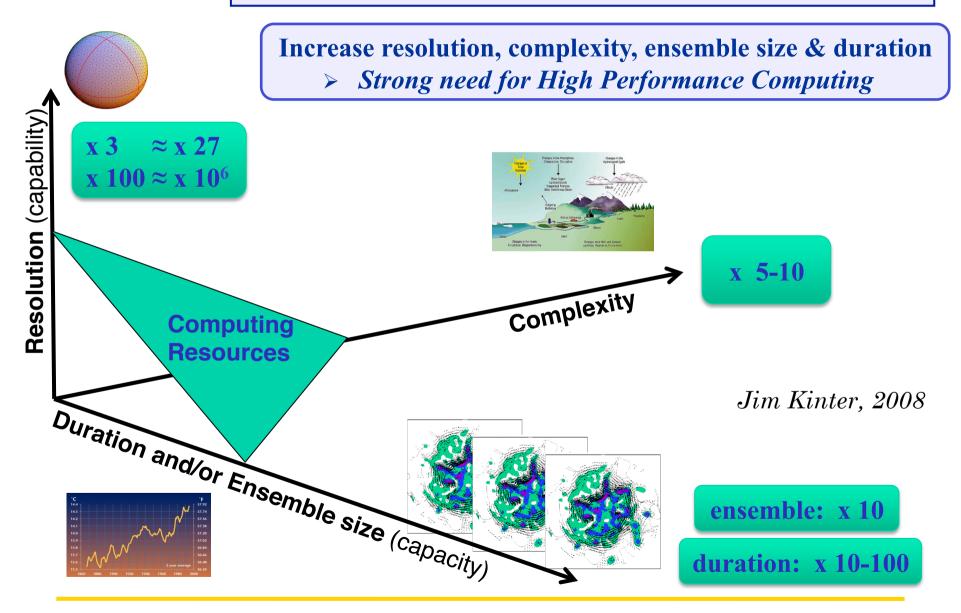
FP7 project « Integrating Activities » networking, service & joint research activities

- Integrate the European Earth System Model community
- Develop ESMs and their environment
- Foster high-end simulations (interface with PRACE)
- Disseminate model results to climate research and impact communities via international databases (CMIP5 & CORDEX)
- Establish a strategy for the European Earth System Modelling Community for 2012-2022 (computing, models, data)

for the European Earth System Modelling Community

Drivers : Science & Society

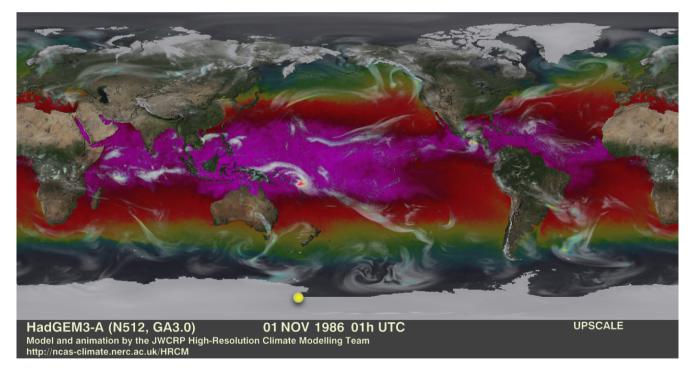
From understanding to development of "Climate Services"


Key science questions

- Q1. How predictable is climate on a range of timescales?
- Q2. What is the sensitivity of climate and how can we reduce uncertainties?
- Q3. What is needed to provide reliable predictions of regional climate changes?
- Q4. Can we model and understand glacial-interglacial cycles?
- Q5. Can we attribute observed signals to understand processes?

Writing team: J. Mitchell, R. Budich, S. Joussaume, B. Lawrence & J. Marotzke 52 contributors from BE, CZ, DE, DK, FI, FR, IT, NO, SE, SP, UK

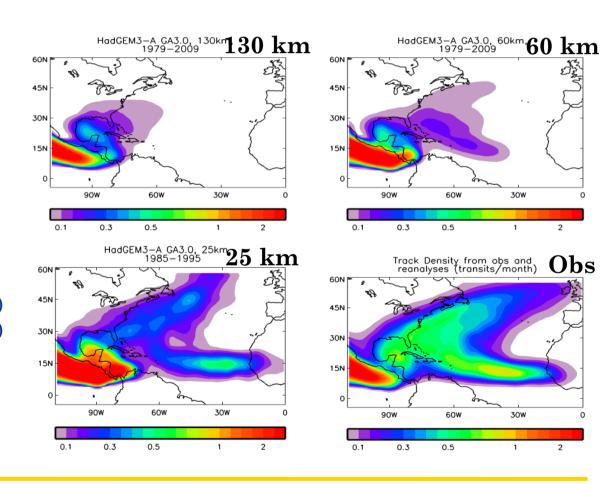
for the European Earth System Modelling Community



for the European Earth System Modelling Community

Increase resolution: grand challenge: ~1 km scale for resolving deep convective clouds in global climate models

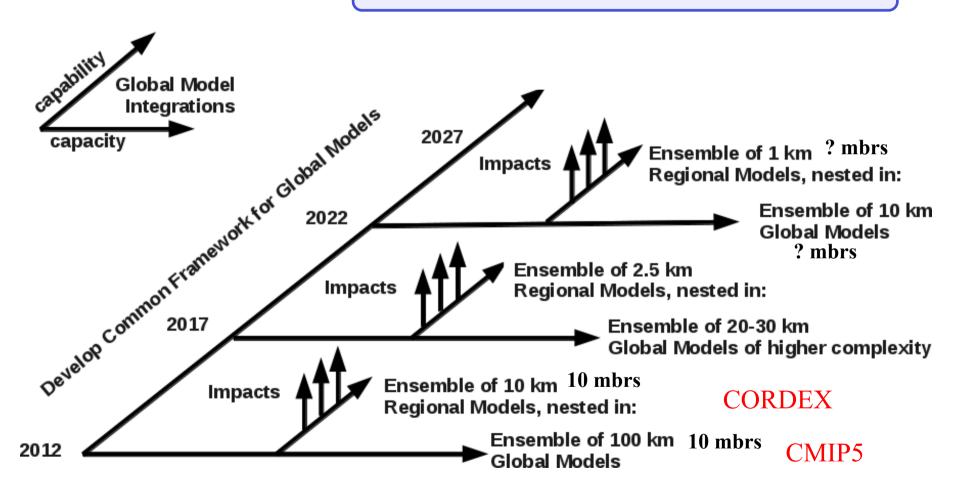
UPSCALE PRACE project, NCAS - High resolution climate group HiGEM- Atmosphere alone ~25 km, 6000 cores – 140 Mhours for whole project



for the European Earth System Modelling Community

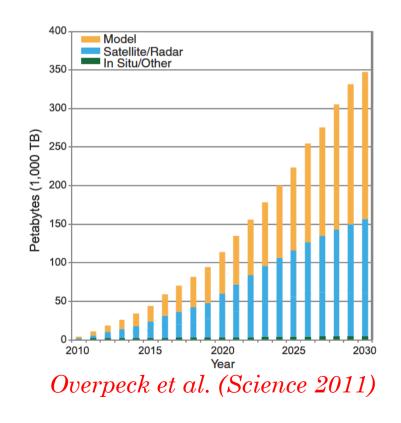
Increase resolution: grand challenge: ~1 km scale for resolving deep convective clouds in global climate models

UPSCALE results:
increased resolution
essential to better
simulate extreme events,
e.g tropical cyclones


PL Vidale (NCAS)
M. Roberts (MO/HC)

for the European Earth System Modelling Community

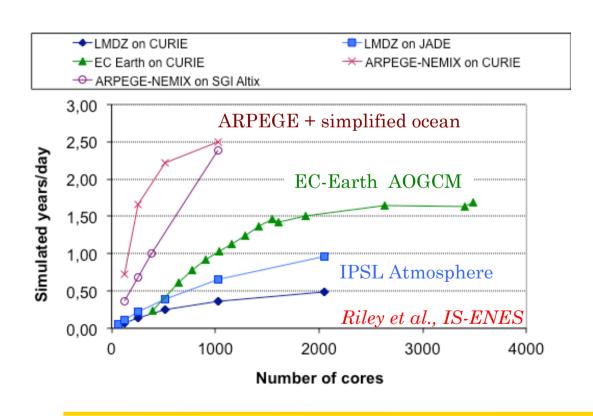
Increase resolution in ensemble simulations

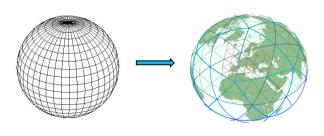


for the European Earth System Modelling Community

Data: Strong demand from society (climate services) for model data, expected to grow exponentially

CMIP5: 2 to 3 PB CMIP6: \mathbf{x} 30? Earth System Grid Federation portal data catalog & Users data catalog &


⇒ Sébastien Denvil's talk tomorrow


for the European Earth System Modelling Community

Models:

- Maintain scientific diversity but harmonise technical developments (coupling strategy, I/O, ...)
- Improve model parameterisations
- Prepare models for future highly parallel HPC architectures

Scalability issue => need to revisit dynamical cores & I/O library

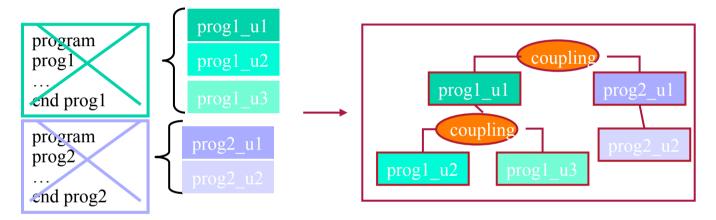
Icosahedral grids

Court. Dubos & Meurdesoif
(IPSL)

HPC for climate modelling in Europe: ENES, IS-ENES and the OASIS coupler

Part II

- Coupling strategies in climate modelling
- OASIS: historical overview, user community
- OASIS3-MCT: use, communication, performances
- Conclusions and perspectives


Coupling strategies in climate modelling

1. use integrated coupling framework

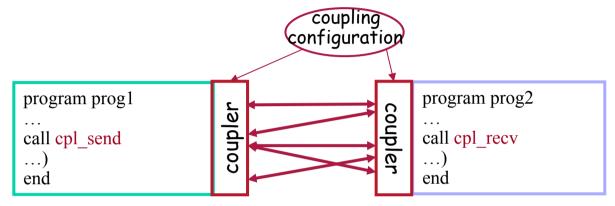
- Split code into elemental units
- Write or use coupling units
- ntal units

 Adapt code data structure and calling interface
- Use the library to build a hierarchical merged code

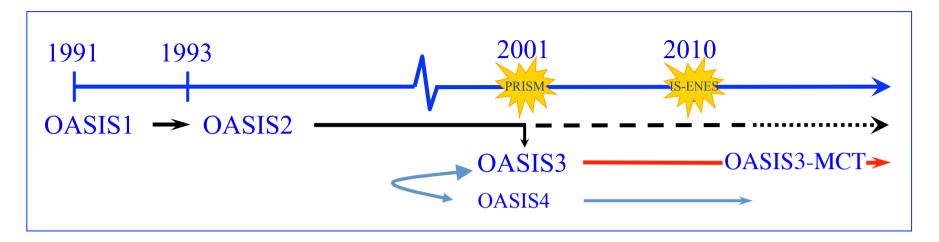
- efficient,
- © sequential and concurrent components
 - use of generic utilities (parallelisation, regridding, time management, etc.)

- existing codes
- (easy)

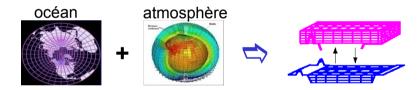
probably best solution in controlled development environment


Coupling strategies in climate modelling

2. use a coupler or coupling library

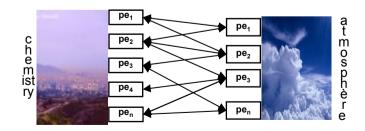


- existing codes
- use of generic transformations/ regridding
- concurrent coupling (parallelism)
- multi-executable: possible waste of resources if sequential execution of the components is enforced
- multi-executable: more difficult to debug; harder to manage for the OS
- probably best solution to couple independently developed codes


The OASIS coupler: historical overview

OASIS1 -> OASIS2 -> OASIS3:

2D ocean-atmosphere coupling low resolution, low frequency


→ flexibility, modularity, 2D interpolations

· OASIS4 / OASIS3-MCT:

2D/3D coupling of high resolution parallel components on massively parallel platforms

→parallelism, efficiency, performance

The OASIS coupler: user community today

About 40 groups world-wide (climate modelling or operational monthly/seasonal forecasting):

- France: CERFACS, METEO-FRANCE, IPSL (LOCEAN, LMD, LSCE), OMP, LGGE, IFREMER
- Europe: ECMWF + Ec-Earth community
- Germany: MPI-M, IFM-GEOMAR, HZG, U. Frankfurt
- UK: MetOffice, NCAS/U. Reading, ICL
- Denmark: DMI
- Norway: U. Bergen
- Sweden: SMHI, U. Lund
- Ireland: ICHEC, NUI Galway
- The Netherland: KNMI
- Switzerland: FTH Zurich
- Italy: INGV, ENEA, CASPUR
- Czech_Republic : CHMI
- Spain: U. Castilla
- Tunisia: Inst. Nat. Met
- Japan: JMA, JAMSTEC
- China: IAP-CAS, Met. Nat. Centre, SCSIO
- Korea: KMA
- Australia: CSIRO
- New Zealand: NIWA
- Canada: RPN-Environment Canada, UQAM
- USA: Oregon State U., Hawaii U., JPL, MIT
- Peru: IGP + downloads from Belgium, Nigeria, Colombia, Saudi Arabia, Singapore, Russia
- OASIS3 is used in 5 of the 7 European ESMs that participate in IPCC AR5

Use of OASIS3-MCT

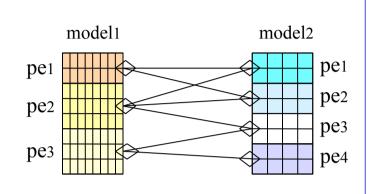
OASIS3-MCT is a library linked to the component models

OASIS3-MCT API:

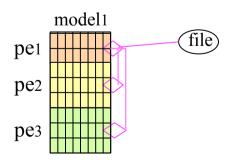
```
    Initialization: call oasis_init_comp(...)
    Grid definition: call oasis_write_grid (...)
    Local partition definition: call oasis_def_partition (...)
    Coupling field declaration: call oasis_def_var (...)
    Coupling field exchange:
```

> in model time stepping loop

```
call oasis_put (..., date, var_array. ...)
call oasis_get (..., date, var_array, ...)
```


- user's defined source or target (end-point communication)
- sending or receiving at appropriate time only
- automatic averaging/accumulation if requested
- · automatic writing of coupling restart file at end of run

OASIS3-MCT communication


Fully parallel communication between parallel models based on MCT using MPI: mct

- computation of communication patterns
- matrix multiplication for regridding (on the source or target processes)
- coupling data transfer/redistribution

If specified by the user, the regridding weights and addresses are calculated onto one model process using the LANL SCRIP library (nearest-neighbour, bilinear, bicubic, conservative)

•I/O functionality (switch between coupled and forced mode):

Some OASIS3-MCT users

◆ CERFACS (France):

- NEMO ocean (ORCA025, 1021x1442) ARPEGE atmosphere (Gaussian Red T359 grid, 817240 points).
- Decadal experiments in HiResClim I & II PRACE project (38 & 50 Mhours on IBM Mare Nostrum at BSC)
- Seasonal prediction experiments in SPRUCE PRACE project (27 Mhours on tier-0 Bullx Curie at TGCC).

IPSL (France):

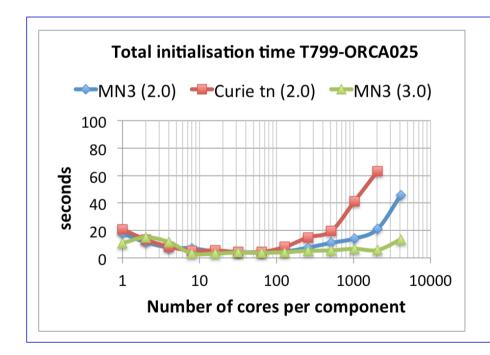
- WRF atm NEMO ocean model, both with two-way nested zooms, resolution from 27 km to 9 km (4322X1248 grid points), 7 coupling fields, 1h coupling period.
- Used in PULSATION project funded by the French ANR, 22 Mhours on PRACE tiers-0 Bullx Curie.

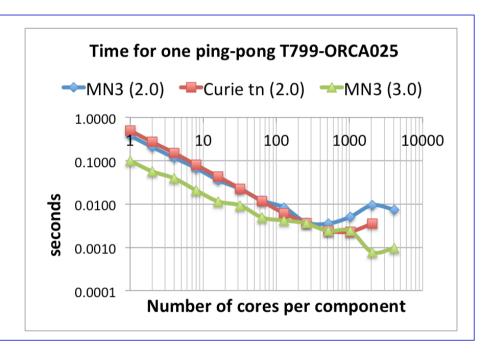
MPI-M (Germany):

All MPI-ESM versions, in particular MPI-ESM-XR: atmosphere ECHAM6 T255L95 (768x384 grid points, ~50km, 95 vertical levels) - ocean MPIOM TP6ML40 (3602x2394 grid points, ~10km, 40 vertical levels);
 17 coupling fields, 1h coupling frequency.

MetOffice (UK):

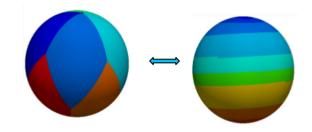
• Global ocean-atmosphere coupling between UM global atmosphere (N768, 1536x1152) and NEMO ocean (ORCA012, 4320x3058), 38 coupling fields, 1h-3h coupling frequency

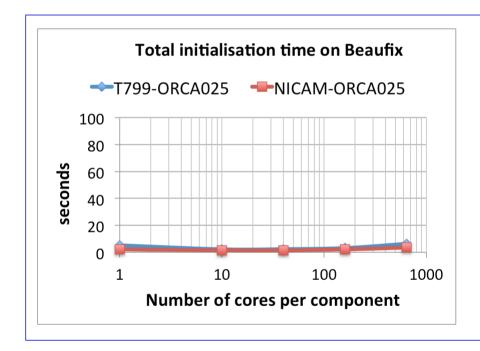

BTU-Cottbus (Germany):

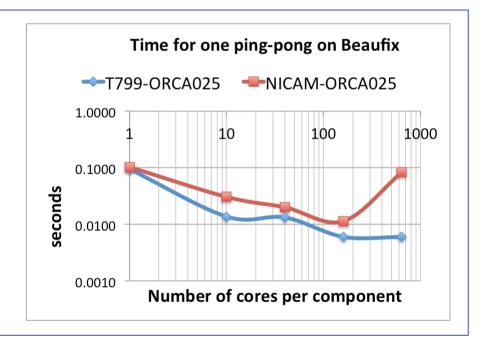

- 3D coupling between COSMO-CLM regional atmosphere (221x111x47, ~2 deg) and ECHAM global atmosphere (T63, 192x96x47), + 2D coupling to MPI-OM ocean (254x220)
- 6% coupling overhead for exchange of 6 x 3D fields every ECHAM time step
- ...+ many others ...

OASIS3-MCT performance

- Toy coupled model: ping-pong exchanges between NEMO ORCA025 grid (1021x1442) and Gaussian Reduced T799 grid (843 000)
- Bullx Curie thin nodes; Intel® procs Sandy Bridge EP; IFort 12.1.7.256, Bullx MPI 1.1.16.5
- IBM MareNostrum3: Intel Sandy Bridge processors, Intel MPI 4.1.0.024


Coupling overhead for one-year long simulation with one 1 coupling exchange every hour in each direction between codes with O(1 M) grid points running on 4000 cores/component:


> ~20 seconds for initialisation, ~9 seconds for data exchange



OASIS3-MCT performance

- Ping-pong exchanges between NEMO ORCA025 grid (1021x1442) and NICAM icosahedral grid (2621440)
- Bullx Beaufix: ; Intel® Ivy Bridge EP; Ifort, IMPI 4.1.1.036

Coupling overhead for one-year long simulation with one 1 coupling exchange every hour in each direction between codes with O(1 M) grid points running on 1000 cores/component:

> ~7 seconds for initialisation, ~12 minutes for data exchange

Conclusions and perspectives

ENES & IS-ENES

- IS-ENES: build a long-term European Research Infrastructure for climate:
 - > proposal for a "Centre of Excellence for climate and weather"
 - > proposal for an ESFRI
- 2012-2022 strategy for the European climate modelling community
 - High Performance Computing: strong need for increased resolution, complexity, ensemble size & duration
 - Data issue : exponential growth, strong demand from society
 - Model scalability: need for new dynamical cores, I/O library
- Climate modelling has long cycles of development/evaluation/production
 - > needs HPC facilities adapted to its needs,
 - > on-going discussion with PRACE (CMIP6)

The OASIS3-MCT coupler

- Good example of bottom-up approach and shared software benefits
- Good performance: most likely to provide a satisfactory solution for our climate models for the next ~5 years.
- Longer term:
 - > IS-ENES2 Coupling technology benchmark
 - > Should we (Europeans) evolve to the "integrated coupling" approach (e.g. ESMF): more constraints but more opportunities for performance,

The end