
Optimal communication for parallel matrix
multiplication

Anton Mellit

ICTP, Italy

School on Parallel Programming and Parallel Architecture for
HPC and Developer School for HPC applications in Earth

Sciences, 2014

Main reference

G. Ballard and J. Demmel and O. Holtz and B. Lipshitz and
O. Schwartz
Communication-optimal parallel algorithm for Strassen’s
matrix multiplication
Proceedings of the 24th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA) 2012.
http://arxiv.org/abs/1202.3173

http://arxiv.org/abs/1202.3173

Why matrix multiplication?

I Still simple enough to explain

I Not trivial, so interesting ideas for parallelization can be
illustrated

Idea
Simple algorithms are easily parallelizable, more sophisticated
algorithms are much harder to parallelize efficiently (though not
impossible).

Complexity of parallel algorithms

Serial algorithms

Time, memory. I.e. FFT: O(N logN). Common bruteforce tactics
in cryptography: O(2N) time, O(1) memory, meet in the middle

approach: O(2
N
2) time, O(2

N
2) memory.

Parallel algorithms

New variable: the number of processors P. Ideal parallization: If
serial time complexity is T (N) and memory complexity is M(N),

the parallel version should have T (N)
P , M(N)

P . Usually impossible!

Massive parallelism: P →∞.

Communication complexity

Naive (Shared memory, Parallel random-access machine) is
unrealistic.
In fact, as P →∞ parallel algorithms usually become
communication bound

Conclusion
In a massively parallel setup we must optimize communication!

Things to worry about

I Bandwidth cost BW := Amount of data sent (per node)

I Latency cost L := Number of messages sent/received (per
node)

Matrix multiplication (classical)

f o r i i n range (N) :
f o r k i n range (N) :

C [i , k] = 0
f o r j i n range (N) :

C [i , k] += A [i , j] ∗ B [j , k]

Remark
Matrix multiplication respects block decompositions.

Serial complexity

O(N3)

Ways to parallelize

Naive method
Split the resulting matrix (parallelize the outer loop) in an arbitrary

way into blocks of size N2

P .

2D
Split all the matrices into blocks of size N√

P
× N√

P
.

3D
Split each of the 3 loops into P

1
3 blocks of length N

P
1
3

.

Results O(·)
T BW L

Naive N3

P
N3

P P

2D N3

P
N2
√
P

√
P

3D N3

P
N2

P
2
3

logP

Strassen’s multiplication

(
A00 A01

A10 A11

)
·
(
B00 B01

B10 B11

)
=

(
A00B00 + A01B10 A00B01 + A01B11

A10B00 + A11B10 A10B01 + A11B11

)

Q0 = A00B00 C00 = Q0 + Q1

Q1 = A01B10 C01 = Q0 + Q2 + Q3 + Q5

Q2 = (A10 + A11)(B01 − B00) C10 = Q0 + Q3 + Q4 − Q6

Q3 = (A10 + A11 − A00)(B11 − B01 + B00) C11 = Q0 + Q2 + Q3 + Q4

Q4 = (A00 − A10)(B11 − B01)

Q5 = (A01 − A10 − A11 + A00)B11

Q6 = A11(B11 − B01 + B00 − B10)

Only 7 multiplications!

Analysis

For problem of size N = 2n “only” O(7n) ≈ O(N2.8074) operations
needed comparing to O(8n) = O(N3). This is not much, for
N = 105 we have N2.8074 ≈ 1014 vs. N3 = 1015.
Assume we do r steps of this recursion and N = 2rN0.

1 problem of size 2rN0 × 2rN0

⇓
7 problems of size 2r−1N0 × 2r−1N0

⇓
. . .
⇓

7r problems of size N0 × N0

How do we parallelize this?

Going parallel

Idea
Suppose we have P = 7r nodes, i.e. 74 = 2401. We want each of
the problems of size N0 × N0 to be solved on one node.

Naive implementation

r all-to-all requests

Warning

Note that the memory usage grows exponentially! The original
input had ∼ 4rN2

0 words. After r recursion steps we need ∼ 7rN2
0 .

This means that if memory is limited we may want to run first few
recursion steps sequentially.

Optimizing communication

How do we map the 4r pieces of the original input to 7r nodes?

Idea
Distribute data in such a way that formations of the matrices Qi

are done locally at each recursion step.

The solution is to further split each of the 4r pieces into 7r pieces.
Suppose N = 2r7

r
2N1, so that both input and output matrices are

split into 4r7r square blocks of size N1 ×N1. Label each node by a
sequence b1, b2, . . . , br with bi ∈ {0, 1, . . . , 6}. Label each block
by a sequence a1, a2, . . . , ar , b1, b2, . . . , br with ai ∈ {0, 1, 2, 3},
bi ∈ {0, 1, . . . , 6}. For r = 2 each of A,B,C are decomposed in 16
big matrices, each big matrix is decomposed into 49 small
matrices. Initially the first node contains the first small matrix in
each big matrix and so on.

Initial data distribution
Node b1, b2, . . . , br contains all the blocks
a1, a2, . . . , ar , b1, b2, . . . , br .

After the first recursion step

Node b1, b2, . . . , br contains all the blocks a2, . . . , ar , ∗, b2, . . . , br
of the matrices we need to multiply to obtain Qb1 . This is achieved
by an all-to-all request in each group of 7 nodes ∗, b2, . . . , br .

After the second recursion step

Node b1, b2, . . . , br contains all the blocks
a3, . . . , ar , ∗, ∗, b3, . . . , br of the matrices we need to multiply to
obtain Qb1b2 . This is achieved by an all-to-all request in each
group of 7 nodes b1, ∗, b3, . . . , br ,

. . .

Conclusion
At each recursion step we need an all-to-all communication in a
group of 7 nodes.

BW ∼ 7·4rN2
1+724r−1N2

1+· · ·+7r+1N2
1 ∼ 7rN2

1 =
N2

4r
≈ N2

P0.7124

<
N2

P0.6667

L ∼ 7r ∼ logP

≈ 2× speed-up on 2401 nodes for matrices of size 94080× 94080.

Remarks

I Use libraries!

I Estimates do not reflect reality because of hidden constants.

I Estimates do not reflect reality because communication is
more complicated.

I Data distribution is the key.

