Workshop on Megathrust Earthquakes and
Tsunami

Prof. Thorne Lay

Begin at the beginning; basic elasticity
Develop the basic equations for P and S waves.

CONCEPTS:

Continuum

Stress Tensor
Equation of Motion
Strain Tensor

Supplementary Reading (Optional, for more details/rigor)
Lay and Wallace, Modern Global Seismology, Ch. 2
Stein and Wysession, An Introduction to Seismology,
Earthquakes and Earth Structure, Ch. 2




The overview talk was built on the idea that tectonic processes, like faulting, can produce
observable signals (ground shaking from elastic waves) useful to study the tectonics.




Figure 1.1-1: Schematic geometry of a seismic experiment.
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U(Z,t) is vector ground displacement at position
X, defined in some coordinate system, as a
function of time. This is what we can record.

A force, associated with
some form of energy

release at position xg, in or on
a body will produce a motion
at position x,, somehow.

If the body is perfectly

rigid, the motion will be

an instantaneous translation,
rotation or both. Use F=ma.

If the body is elastic, we

still use F=ma, but the action
of the force spreads through
the body causing internal
deformations that vary in
space and time. Do describe
these we need general
representations of internal
forces and deformations.

We use stress and strain.



An elastic medium will have only two types of waves, along with near-source
permanent deformations if the forces at the source have permanent values.
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We imagine the medium is made
of continuous matter (ignore
atomic nature). This is called a
continuum. Mathematical
representations of displacement,
velocity, acceleration, stress, etc.
are then continuous functions over
three-dimensional space and time.
We can compute their space and
time derivatives and have
continuous functions.

Continuum Mechanics:
Force --> per unit volume
Mass --> per unit volume

F = ma
As vector:
o*u(x, t)
f(x, )=
(x,0)=p ¥

As components:

azui(xa t) e
T

fix, 1) =p



Figure 2.3-1: Surface force on a volume element.

Two classes of forces:

Body forces (e.g., gravity)

Surface forces (e.g., pressure underwater, stresses)



Figure 2.3-1: Surface force on a volume element.

Two classes of forces:

Body forces (e.g., gravity)

Surface forces (e.g., pressure underwater, stresses)

The traction vector has the same orientation as the force, and is
a function of the unit normal vector n



Figure 2.3-2: Traction vectors on the faces of a volume element.
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TV is the traction vector acting on the surface whose outward normal is in the positive & ; direction.

The components of the three traction vectors are Tfj ) where the upper index (/) indicates the surface
and the lower (i) index indicates the component.

Example, T§1) is the x; component of the traction on the surface whose normal is €;.



Figure 2.3-2: Traction vectors on the faces of a volume element.
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TV is the traction vector acting on the surface whose outward normal is in the positive & ; direction.

The components of the three traction vectors are Tfj ) where the upper index (/) indicates the surface
and the lower (i) index indicates the component.

Example, T§1) is the x; component of the traction on the surface whose normal is €;.

Stress tensor, o ;:

1 (1 (1 (D)

o1l O Op3 T Iy T,' Tj

2 2 2 )

=101 Opp O3 |= T() = Tl) Té) T§)
3 3 3 3

031 O3 033 T? TI() Té) T§)

The tensor’s rows are the three traction vectors.

The stress is the force per unit area that the material on the outside of the surface (the side to which n
points) exerts on the material inside.



Figure 2.3-4: Stress components on the faces of a volume element.
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Figure 2.3-4: Stress components on the faces of a volume element.
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Normal stresses are positive outward, and expand the volume.
---> Tension

Normal stresses are negative inward, and contract the volume.
---> Compression
(Holds true for Earth’s interior)



Figure 2.3-3: Stress components on the faces of a tetrahedron.

4

¥ 033

The stress tensor gives the traction vector T acting on any surface within the medium.

Example/ The traction on an arbitrary element of surface dS, whose normal n is not along a coordinate axis,

is found by multiplying each component of the traction by the area of the face it acts on and summing over
the faces.

3

Ti =0;h + 0Oy;ny + O3;n3 = Z O-jinf = o-/”nj
j=1



Index notation:

3
a-b= albl + a2b2 + Cl3b3 - Z aib,-

i=1

Einstein summation convention:

a-b=a,~b,_-

|u‘2:uiui-



The stress tensor is symmetric:

O :;

j = Oji

Jt

Otherwise: torques --> rotations!

Allows us to define tractions as

I;= Z Ojhj = Ojn;

j=1

(as components)

T=o0on

(as vectors)

Figure 2.3-5: Torques on a rectangle.
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The stress tensor is symmetric:
O'l.]. = 0 ;;

Jt

Otherwise: torques --> rotations!

Allows us to define tractions as

1= X ogny oy,

j=1

(as components)

T=o0on

(as vectors)

Stress = force/area
Incgs: 1 bar=10° dyn/cm?

1 atm = 1.01 bars

Figure 2.3-5: Torques on a rectangle.
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What makes a vector a vector?!



What makes a vector a vector?!

- It remains the same in different coordinate systems.
- Its components 1n different coordinate systems are
related by a transformation matrix A4.



What makes a vector a vector?!

- It remains the same in different coordinate systems.
- Its components 1n different coordinate systems are
related by a transformation matrix A4.

Similarly, o 1s a fensor (and not just a matrix)
because it transforms between coordinates according to:

o =Ac AT



Example: A block of material with faces perpendicular
to the x; and x, axes is subject only to normal stresses o, and o5, so the stress tensor is diagonal:

(03] 0 0
c=|0 o, 0
0 0 O

Figure 2.3-6: Different stress components in different coordinate systems.
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Example: A block of material with faces perpendicular
to the x; and x, axes is subject only to normal stresses o, and o5, so the stress tensor is diagonal:

(03] 0 0
c=|0 o, 0
0 0 O

Now consider a different block in the SAME PHYSICAL SITUATION, but with rotated sides:

o =AcA”
cos® singd Oyo; O
=|—-sinf@ cos® 0| 0 o,
0 0 IAO O

0Oycos® —singd O o,¢c08> 60 + 0,5in* 6 (0, —oy)sinfcosd® 0
0|sineg cos® O |=|(o,—o07)sinfcosd osin®6+o0,c05°0 0
0 0 0 1 0 0 0

Figure 2.3-6: Different stress components in different coordinate systems.
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Example: A block of material with faces perpendicular
to the x; and x, axes is subject only to normal stresses o, and o5, so the stress tensor is diagonal:

(03] 0 0
c=|0 o, 0
0 0 O

Now consider a different block in the SAME PHYSICAL SITUATION, but with rotated sides:

o =AcA”
cosf® sind Oyo;, 0 Oycoséd -—singd 0 o,¢c08> 60 + 0,5in* 6 (0, —oy)sinfcosd® 0
=|-sin@ cos® 0| 0 o, 0]|sin® cosé O |=|(o,—0))sinfcos® o)sin’0+o0,c0s?6 0
0 0 IAO 0 0 0 0 1 0 0 0
For example, if o, = 1, 0, =— 1, and 8 = 45°,
Figure 2.3-6: Different stress components in different coordinate systems.
0 -1 0
o=[-1 0 0 Gy
0 0 0
First block: only normal stresses. X2
A
Second block: only shear stresses. X5 w « X/
Same state of stress!! R <
(but different coordinate axes!) N \9
e = X'l
1%5)




For any state of stress, a set of coordinate axes can be found that provides only normal stresses (and no
shear stresses!).

These axes are called the principal stress axes and the normal stresses on these surfaces are called princi-
pal stresses.



For any state of stress, a set of coordinate axes can be found that provides only normal stresses (and no
shear stresses!).

These axes are called the principal stress axes and the normal stresses on these surfaces are called princi-
pal stresses.

To find the principal stresses, we use the concepts of eigenvalues and eigenvectors.

The shear components of the traction will be zero if the traction and normal vectors are parallel, such that
they differ only by a multiplicative constant, A,

T,=O'Unj=/1n,

The principal stress axes n are the eigenvectors of the stress tensor.

The principal stresses A associated with each one are the eigenvalues.



Figure 2.3-9: Stress fields associated with three types of faulting.
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Figure 2.3-10: Stress components contributing to force in the x, direction.
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Write F = ma in terms of body and surface forces for each component.

For example, for the x, direction, the terms involving the €, and —e, faces (where the area of the faces are

dxdx5,) are

[Gzz(x + dx,€;) — Uzz(x)] dx dxsy =|op(x) +

d0,(X)
axz

e dX2 = O'22(X) dxldx3 =

do(X)

axz

dxdx,dx;



Figure 2.3-10: Stress components contributing to force in the x, direction.
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Write F = ma in terms of body and surface forces for each component.

For example, for the x, direction, the terms involving the €, and —e, faces (where the area of the faces are

dxdx5,) are

[Gzz(x + dx,€;) — Uzz(x)] dx dxsy =|op(x) +

d0,(X)

axz

e dX2 = O'22(X) dX]dX3 =

do(X)

axz

\

dxdx,dx;

(Similar for the force in the x, direction due to the pairs of faces with normals +€; and *e;.)



Figure 2.3-10: Stress components contributing to force in the x, direction.
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Write F = ma in terms of body and surface forces for each component.

For example, for the x, direction, the terms involving the €, and —e, faces (where the area of the faces are
dxdx5,) are

d0,(X)
dx;,

aUzz(X)

e ™ dxdx,dx;

[Uzz(x + dx,€;) — Uzz(x)] dxydx; =| 0p(X) + ——— dx; — 035(X) | dxdx3 =

(Similar for the force in the x, direction due to the pairs of faces with normals €, and te;.)

Summing the three terms, adding the body force component, and equating this net force to the density times
this component of the acceleration yields

80'12 80'22 + 80'32 2

axl aX2 aX3

dxdx,ydxs + 5 dxdx,dx; = dxldxzdx3



do Jdo Jdo O’u
|: ax112 " axzz2 T 8x332:| oy Jo WhGain = 2 8722 i gl
3
doj;  doy  doy 99 o1
dx dx;  0x3 & ng dx; /2= P ar?



doy, oy | 9 o
|: 8012 + 8022 + 8032:| dxidx,dxs + fp dxydx,dxs = p BTZZ dxdx,dx;
X1 X2 X3
3
doy, 00y | doy do 0*u)
+ + + fr= + fi=p 55
8x1 aX2 8x3 fi ng an ]rz 3 atz

Similar equations apply for the x; and x; components of the force and acceleration:

aO'ﬁ(X, t) _ azu,-(x, t)
ax +ﬁ(xﬂ t)_p atz

i



do, oy 0 o1,
Oz , 90 , 9% dxdx,dxsy + f5 dxidx,dxy = p — dxldxzdx3
x| 0x, 0Xx3 ot
doy, | 9oy 8032 do 0*u)
+ + fo = Tt =P
axl a.X2 fi z axj fé P at2

j=1

Similar equations apply for the x; and x; components of the force and acceleration:

aO'ﬁ(X, t) _ azu,-(x, t)
axj + ﬁ(x9 t) =P atz
aalj(x r) 0*u;(x, 1)
ax, TS D=P55



82

P —— 52 dxldxzdx3

|:30'12 n do) + do3)

dx;  dxp  dx3 :| Gobnier i o, @O 6=

80'12 80'22 80'32 s aO'jz . 82u2
Py | By +ﬁ‘23m thEr5a

Jj=1 J

Similar equations apply for the x; and x; components of the force and acceleration:

aO'ﬁ(X, t) _ azu,-(x, t)
axj + ﬁ(x9 t) - IO atz
aalj(x r) 0*u;(x, 1)
ax,  THED=P 55

J
o (X, 1) + fi(X, 1) = pii;(x, t)

This is the Equation of motion, which applies everywhere in a continuous medium.



doy;(x, 1) 9%u;(x, 1)

o + filx, t)=p 5.2

J

Equation of equilibrium:
(accelerations are zero, like a static problem such as stresses resulting only from gravity)

o (X, 1) =— fi(X, 1)



ao_lj(xa t) . azui(xa t)
e, T fix, 0)=p 37

J

Equation of equilibrium:
(accelerations are zero, like a static problem such as stresses resulting only from gravity)

o (X, 1) =— fi(X, 1)

Homogeneous equation of motion:
(with no forces, such as the harmonic oscillation of wave propagation)

0%u;(x, 1)

o, (X, t)=p 52 KEY Result: Spatial gradients of stress terms

are balanced by inertial terms. This is how
F=ma manifests in a continuum.



OK, so stresses allow us to express internal forces throughout the deformable

(elastic medium). We also need to express the deformations that result. We

Will assume small internal deformations (rock can only elastically deform by

about 1 part in 10,000 without breaking). Assume INFINITESIMAL STRAIN THEORY.

Figure 2.3-11: Change in relative displacement during deformation.
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The strain tensor describes the deformation resulting from the differential motion within a body.

ux + %) = u(x) + 2D 5 = (%) +
a.x./' ’
ou;(X)
51/!1' = ax . 5xj

J

This assumes the spatial gradient in displacements is a very
Small term, approximated by first term of a Taylor Series expansion.

This is INFINITESIMAL STRAIN THEORY; it will be valid for

Small deformation with no tearing or fracturing of the medium. It

Will break down at a fault there there is a discontinuous displacement
(derivative becomes undefined).



The strain tensor describes the deformation resulting from the differential motion within a body.

u;(x + 0x) = u;(x) + 9(x) 0x; =u;(x) + du,
ax.j
du;(X)
5”1' = ax - 5.xj

J

Although we are interested in deformation that distorts the body, there can also be a rigid body translation
or a rigid body rotation, neither of which produces deformation. To distinguish these effects, we add and
subtract du ;/0x; and then separate it into two parts

ui_2 ax] axi Xj 2 axj ax,‘ xj_ eij a)lj XJ

w;; corresponds to a rigid body rotation without deformation. It is antisymmetric (w; = — @;;), so the diag-
onal terms are zero.




The strain tensor describes the deformation resulting from the differential motion within a body.

u;(x + 0x) = u;(x) + 9(x) 0x; =u;(x) + du,
ax.j
du;(X)
5”1' = ax - 5.xj

J

Although we are interested in deformation that distorts the body, there can also be a rigid body translation
or a rigid body rotation, neither of which produces deformation. To distinguish these effects, we add and
subtract du ;/0x; and then separate it into two parts

ui_2 ax] axi Xj 2 axj ax,‘ xj_ eij a)lj XJ

w;; corresponds to a rigid body rotation without deformation. It is antisymmetric (w; = — @;;), so the diag-
onal terms are zero.

Strain tensor:

0x, 2\dx, dx; ) 2\dx; dx
REETOW AR TR
7ol 2\0x;  Ox, 0x, 2\0x; Ix,

o o) Lo )
2 0dx;  dx3) 2\0dx, Ox; 0x3
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Figure 2.3-13: Change in volume due to principle strains.

_______________________________
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The trace or sum of diagonal terms of the strain tensor is the Dilatation:
(gives the change in volume per unit volume associated with deformation)
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Figure 2.3-13: Change in volume due to principle strains.

_______________________________

_____________________________

i du; '
1 a_X3 dX3 !

1
l L
: adxs .

- ax,

au,
—=d
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The trace or sum of diagonal terms of the strain tensor is the Dilatation:
(gives the change in volume per unit volume associated with deformation)

aul 8u2+au3zv.u

6 =¢.= +
! ax1 8x2 8x3

For initial volume dxdx,dx; the volume after deformation is
d o 0 0 0 0
1+ i X1 1+ ﬂ 2 %) 1+ ﬂ X3 = 1+ Y1 + "o + “s deX2dX3 = (1 + B)dxldxzdx3
ax1 a.X'Q 8x3 8x1 axz BX3

If the initial volume is V' = dxdx,dx5, the final volume is V' + AV = (1 + 8)V,
so 0 =AV/V




OK, so now we have a general formulation of internal
forces distributed through a medium, for which any
choice of coordinate system gives us a specific stress
tensor that describes the local state of stress (along with
specific rules for how the stress tensor changes if we
change the coordinate system). That gives us a local
expression for F=ma; the elastic equation of motion,
which specifies accelerations in terms of specific spatial
gradients of the stress tensor. Then we have a general
formulation of how deformations are expressed as linear
spatial derivatives of displacements of points in the
medium (for infinitesimal strain theory). We would like to
relate stress and strain to change the equation of motion
to an equation involving just spatial and temporal
derivatives of displacement. So, what is the relationship
between stress and strain? Next time!




Stress and strain tensors are general representations of
internal forces and deformation within an elastic body.

They are independent representations, but must be
related (F=ma connects forces to accelerations, which are
second time derivatives of displacements, and strains are
spatial derivatives of displacements.

It would be ‘nice’ to have a first-principle’ s theory for a

relationship between stress and strain terms, but until very

recently we have relied on experimental observation of

such behavior for rocks.

e — When compressed, all rock
materials exhibit an interval

l of linear relationship between

stress and strain that is

totally recoverable (elastic).

stress = constant x strain

For relatively low pressure

Y (<400 Mpa, T <600°C),
X A rocks will fracture as stress
‘ J Increases to some limit.

Fracture occurs

Figure 5.7-3: Rh
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Constitutive Law: ¢ = f(o)

O Stress

I\VV - microcracking

1l - dilatancy V - failure (fracture)

VI — frictional sliding

Il — linear elasticity For an experiment
under fixed pressure
and temperature of

| — crack closure the rock.

oL

F
o=F/A
¢ Strain (6L/L)
A (area)



Constitutive Equation — Empirical relationship between stress and strain

Constitutive equations give the relation between stress and strain.

The simplest type of materials are /inearly elastic, such that there is a linear relation between the stress and
strain tensors.

Others could describe viscous (Newtonian and non-Newtonian), viscoelastic, elastic-plastic, etc.

Linearly elastic constitutive equations gives rise to seismic waves.



Linearly elastic material: The constitutive equation is Hooke's law:
Oij = Cijkl €kl
The constants ¢y, the elastic moduli, describe the properties of the material.

Because the subscripts each range from 1 to 3, ¢, has 3* or 81 components.



Linearly elastic material: The constitutive equation is Hooke's law:

Oij = Cijkl €kl
The constants ¢y, the elastic moduli, describe the properties of the material.

Because the subscripts each range from 1 to 3, ¢, has 3* or 81 components.

The stress and strain tensors are symmetric
Cijki = € jiki Cijki = Cijlk

(brings the number of independent components to 36)



Linearly elastic material: The constitutive equation is Hooke's law:

Oij = Cijkl €kl
The constants ¢y, the elastic moduli, describe the properties of the material.

Because the subscripts each range from 1 to 3, ¢, has 3* or 81 components.

The stress and strain tensors are symmetric
Cijki = € jiki Cijki = Cijlk

(brings the number of independent components to 36)

A further symmetry relation based on the idea of strain energy gives:

Cijkl = Criij
(...down to 21)

21 independent components are needed to describe general anisotropy.



SOME
Isotropy: Material behaves the same way regardless of orientation.

This reduces the number of independent c¢;; to 2!!!!



SOME

Isotropy: Material behaves the same way regardless of orientation.

This reduces the number of independent c¢;; to 2!!!!

One useful pair are the Lame ™ constants A and u:

Cijkt = A0ij0r + 1 (05401 + 6;10 j1.)

O = ey 0y + 2ue; = 100;; + 2ue;;

Example:

O11 = A6 + 2,U€11 and Oy = 2,[1812.

The Kronecker delta, 5,-j:
0; =0 ifi#j
=1 ifi=j

So, for example, 6;; = 1, but §;, = 0.




SOME
Isotropy: Material behaves the same way regardless of orientation.

This reduces the number of independent c¢;; to 2!!!!
One useful pair are the Lame ™ constants A and u:
Cijkt = A0ij0r + 1 (05401 + 6;10 j1.)

O = ey 0y + 2ue; = 100;; + 2ue;;

Example:

o1y =A0 +2uey; and o, =2ue,.

Problem: A has no physical meaning



More useful: ¢ and K

The incompressibility or bulk modulus, K is defined by subjecting a body to a lithostatic pressure dp, such
that

The resulting strains are —dpd; = Ad66;; + 2 ude;;

Set i = j and sum (;; = 3): —3dp =31d6 + 2ud6 because o,;; = 3.

K 1s defined as the ratio of the pressure applied to the fractional volume change that results:

_—dp _

K =
do

/1+2
3ﬂ

The constitutive equation in terms of K and u:

Two parts: a volume change and a change in shape.



Two other elastic constants are defined by pulling the material along only one axis, leading to a state of
stress called uniaxial tension. 1f the tension is applied along the x; axis:

o1 =(A+2u)eq + Aey + Aess

0y =0=1de;; + (1 +2u)ey + dexs

o33 =0=Ade;; + dexp + (A +2n)exs

Subtracting the last two equations shows that e, = e33, 50
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€ = €33 = men =—Vveq

This defines Poisson’s ratio, v, which gives the ratio of the contraction along the other two axes to the
extension along the axis where tension was applied.

Substituting this into the equation for oy;:

on _ HBA+2u) _z
ey A+ u

E i1s called Young’s modulus, the ratio of the tensional stress to the resulting extensional strain.



Now, we can combine the
generalized Hookes’ s Law
with the equation of motion
and the relationships between
strain and displacement to
combine everything into a
single equation involving only
constants and displacement.

Start with equations of motion:

%u,(x, t
o (X, )=p %

For the x component:

00, (X, 1)  00,(X, 1)  00,.(X, 1) 0%u (X, 1)
+ + =p
0 x dy 0z ot?

Use the constitutive law for an isotropic elastic medium:

Strains in terms of displacements:

ou,
ox

Gy = A0 ¥ 21es = A0 + 21

du, du,
0.\'y = :uexy =HU ay Dx




Take derivatives of the stress components:

don _ 00 du,
dx  ax e
Jdo

o Pu, u s
dy dy?  dydx
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Use definitions of dilation 8 =V - u = +

Pu,  Fu, &
and Laplacian V*(u,) = a:; o a;lzx + aZuZx

gives x-component displacements:

u,

012

00
A+ uViu)=p
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Combining all three components, in terms of displacements:

Three equations:
Elastodynamic Equations
for Linear Elastic, Isotropic,
Homogeneous Medium

o*u(x, 1)

(A + w)V(V -u(x, 1)) + uVu(x, 1) = p 912



Problem: Where are P and S waves?
We need to separate this into two different
wave equations for P and S.

Use vector identity: Vector calculus is very useful at
5 this point.
Vu=VVV-u)-Vx((Vxu)

to get
2
(’1+2ﬂ)V(V‘u(X,f))—,uVX(VXu(x,t)):pM

dt?

Define the displacement field in terms of two potential functions, ¢ and Y

Helmholtz Theorem:

ANY continuous field can be
represented in this form with

Use vector identities: Potentials (other fields) satisfying
specific criteria.

u(x, 1) =Vo(x, 1) + VX Y(x, )

V x(Vg)=0 V. (VXY)=0

to get
2

(A+2ﬂ)V(V2¢)—ﬂVxVx(er)=p§7(V¢+er)
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(/1+2;1)V(V2¢)—uVXVX(VXT):paa?(V¢+VXT)

The second term simplifies to:

VxVx(VxYT) ==V (VxY)+V(V-(VxY)=-V*VXY)

which separates into:

°Y(x, t)
ot?

VI(A+2u) Vo(x, 1) p

9°¢(x, 1)
dt2

=-V X |:,uV2Y’(x, t)—p



?9(x, ) °Y(x, t)
2 > _ 2 )
V(A +20) V3(x, 1) = p =55 | ==V x| uVX(x, 1) = p = 5=
One solution is for both sides to equal zero all the time:
The scalar potential side:

1 9%o(x, ) This is a wave equation for
Vio(x, )= — the P Y

2 I e P wave — ¢ is the

space-time P wavefield

with velocity o = [(A + 2u)/ p]"?

The vector potential side:

1 9*Y(x, 1) This is a wave equation for
p?  or? the S waves — g is the
space-time S wavefield

VAY(x, 1) =

with velocity 8 = (u/p)'"?



OK, let’s take a breath. All this algebra has given a profound result
that we want to take stock of.

The general mathematical representation of motions everywhere in the
medium satisfying the elastodynamic equations, U(x,t), is given by
simple spatial derivative operations on two space-time functions,

¢(x,t) and yP(x,t), which are themselves solutions of the three-dimensional
wave equation.

d(x,t) is the P wavefield
P(x,t) is the S wavefield

Physical displacements of the P wave are calculated by taking the
gradient of ¢(x,t).

Physical displacements of the S wave are calculated by taking the
curl of y(x,t).

Because the wavefields satisfy the wave equation, P and S wave motions
have basic behavior of waves — this makes the final solution very
straightforward: we just need to understand properties of waves.




