Stress and Strain in Subduction Earthquake "Cycles"

Kelin Wang Pacific Geoscience Centre, Geological Survey of Canada And University of Victoria, Canada

01 hour

M ~ 9 Cascadia earthquake, Jan. 26, 1700 (Satake et al. 2003, JGR)

Geodetic Strain Rates

A 100-km line becomes shorter by 2 cm each year

Geodetic Strain Rates

Forearc Stresses

Summary of Stresses

Forearc Stresses

Nankai Forearc

Stresses and geodetic strain rates are similar to Cascadia

- Why is margin-parallel compression large?
 Local tectonic environment
- 2. Why is margin-normal stress small?• Fundamental process
- 3. Why is geodetic contraction margin-normal?Interseismic deformation

1. Why is marginparallel stress large?

Secular motion of Cascadia forearc (*Modified from Wells & Simpson,* 2001).

Assumed to be steady state.

To be subtracted from interseismic observations and model.

The Cascadia Subduction Zone

2. Why is marginnormal stress small?

Margin-normal stress in forearc is controlled by two competing factors:

- Gravity induces horizontal tension
- Plate coupling causes compression

Model by Ikuko Wada

Two converging elastic plates in frictional contact $\tau = \mu' \sigma$

Non-lithostatic stress symbols:

Thin – compression Thick – tension

(Finite element with Lagrange-multiplier domain decomposition)

Wang and He (1999 JGR)

Wang and He (1999 JGR)

$\mu' = 0.03 - 0.06$ for most subduction zones studied

Northeast Japan before 2011 Tohoku earthquake

Deviatoric stress (red is compressive)

Wang and Suyehiro, 1999 GRL

Heat Flow Measurements

BSRsect

Subduction zones with adequate heat flow data to constrain frictional heating

Gao and Wang, 2014 Science

Geodetic Strain Rates

3. Why is geodetic contraction marginnormal?

A Stretched Elastic Band

Time 1: Tension

3. Why is geodetic contraction marginnormal?

Geodetic measurements have detected stress changes, not the absolute stress.

Great earthquakes cause small perturbations to forearc stress.

Geodetic Strain Rates

Shear Stress on Subduction Fault

stress

perturbation

Margin-parallel compression

Margin-parallel compression

Margin-parallel compression

Stress drop estimates:

Simons et al. (2011): 2-10 MPa Koketsu et al. (2011): 4.8 MPa Lee et al. (2011): 7 MPa

> Kumagai et al. (2012): Locally up to 40 MPa

Nankai Forearc

Nankai forearc seismicity before and after 1944/46 earthquakes

(Kimura and Okano, 1995)

Summary

Subduction faults are weak (μ' 0.03 – 0.13) and are never "strongly coupled".

Small margin-normal stress

- Low frictional heating
- Rupture-zone average stress drop in great earthquakes is a fraction (< 1/3) of fault strength; local stress drop can be larger. Interseismic margin-normal contraction May modulate forearc seismicity
- Interseismic deformation reflects stress changes in earthquake cycles, not absolute stress.

Elastic deformation only reflects stress change

Only permanent deformation can be used to infer absolute stress