Deformation cycles of great subduction earthquakes
in a viscoelastic Earth
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Global Isostatic Adjustment (GIA) (or Post-glacial rebound)
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Nansen (1928) established Fennoscandian ice sheet history
Haskell (1935) determined a mantle viscosity of 102" Pa s

Commonly accepted global average today: 10%° - 102! Pa s
Viscosity of honey at room temperature: about 1000 Pa s




When plate tectonics just gained recognition:

_~ Periodic loading at trench
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1-D stress diffusion model of Elssaser (1969), Bott and Dean (1973)
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Earth rheology for different timescales
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We've come a long way in monitoring and modeling earthquake deformation

1973 (Bott and Dean)
( Periodic loading at trench
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1984 (Thatcher and Rundle)
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Wang, Hu, He (Nature, 2012)




How do we observe a full earthquake cycle?

Subduction earthquake cycles — a few hundred years
Modern geodesy (GPS) — less than two decades



Japan: Two years after the M 9 Tohoku earthquake

GSI website
1 (February 2013)
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Japan and Sumatra: shortly after a great earthquake
All sites move seaward
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Alaska and Chile: ~ 40 years after a great earthquake:
Opposing motion of coastal and inland sites
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Cascadia: ~ 300 years after a M ~ 9 earthquake:
All sites move landward
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(a) GPS Velocities Wells and Simpson (2001)
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Stress
relaxation

Stress relaxation

Characteristic timescales:
Afterslip — months to a few years
Viscoelastic relaxation (transient) — a few years
Viscoelastic relaxation (steady-state) — a few decades
Locking — length of the earthquake cycle



(a) Sumatra (c) Cascadia
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P/P,

Based on 1-D stress diffusion model of
Elssaser (1969), Bott and Dean (1973)
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Central part of Chile mesh Central part of Cascadia mesh

Using exactly the
same rheology as
for Sumatra




Assigning coseismic slip and afterslip distributions ...

(a) Sumatra (b) Chile (c) Cascadia
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Details important Details less important Details unimportant




a. Sumatra
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(@ Stress
Stress relaxation relaxation

: Mantle -

Earthquake cycle = Rupture + D + @ + @

Characteristic timescales used in the model:
Afterslip — 1.25 yrs
Viscoelastic relaxation (transient) — 4 years
Viccoelastic relaxation (steady-state) — 80 years
Locking — length of the earthquake cycle



Cascadia since the 1700 earthquake
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1995 Antofagasta earthquake, N. Chile (M,, = 8.0)

1993-95 Displacements 1996-97 Velocities
(dominated by co-seismic) (2 years after earthquake
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Motion of GPS station
AREQ following M 8.4

Peru earthquake of
June 2001

Bolivia

UPLNE
ared

- = : —_— -r _—

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

2001

I
|
i
1
|
—~ :
\CE}, -0,02 : -
— I === North
C 1
o -0,04 : .
Perfettini et g:; o Courtesy of M. Chlieh =@= East
2158 & !
~ 2o\ AO\LS O - ]
75°W T4°W 73 © 0,06 | Up
& l
w [ |
A 008 i
I
|
0,1 i

=
0 "

4
une 2001

-0,12 23




Cascadia
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Location of seaward-landward motion transition
for different earthquake sizes
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Wang, Hu, and He (2012, Nature)

(@ Relaxation

Mantle
wedge Oceanic mantle

Earthquake cycle = Rupture + D+ @ + ®)

(@ Relaxation

Related question: Can viscoelastic relaxation be ignored
in short-term postseismic deformation?
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Rupture model: linuma et al. (2012)
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and this work
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oseismic displacement b Postseismic displacement (1 year
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eafloor sites

2013
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a Coseismic displacement b Postseismic displacement
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Contours lines: afterslip




a)2011/03/12 — 2011/04/12 b)2011/04/12 — 2011/05/12 ¢)2011/05/12 — 2011/06/12

Ozawa et al. (2012):
Afterslip in elastic Earth
fully explains 8-month

postseismic motion of
land GPS sites

ontour Interval:




Summary

Interseismic deformation is not a mirror image of coseismic deformation

Elastic model only provides an “equivalent” kinematic description (all
elastic models of interseismic locking need revision)

(Steady-state) mantle wedge viscosity ~ 10'° Pa s (very low!)

Timescale of postseismic reversal of motion direction depends on
earthquake size (longer for larger earthquakes)

Transient rheology and afterslip are both responsible for short-term
post-seismic deformation

Rupture asymmetry leads to immediate motion reversal in the rupture
area (important for constraining afterslip)

All elastic models over-estimate afterslip downdip of rupture zone and
under-estimate shallow afterslip

Seafloor geodesy will soon bring more breakthrough discoveries



