

Effect of the ionospheric irregularities occurring before earthquakes on the signal parameters of GNSS S.A. Pulinets^{1,2}, D.V. Davidenko^{1,3}

¹Space Research Institute, Russian Academy of Sciences, Moscow ²JSC "Russian Space Systems", Moscow ³S.P. Korolev Rocket and Space Corporation «Energia», Korolev

United Nations/ICTP Workshop on the Use of Global Navigation Satellite Systems (GNSS) for Scientific Applications, 1-5 December 2014, Trieste, Italy

Outline

>Introduction

- Seismo-ionospheric anomalies unpredictable threats for the satellite navigation and communication
- >The types of seismo-ionospheric anomalies
- Multi-parameter monitoring the way to anticipate the seismo-ionospheric anomalies in advance
- Local character and self-similarity of the ionospheric precursors – the way to their automatic recognition
- ≻Conclusions

Seismo-ionospheric anomalies and radio waves

propagation

ionosphere over the earthquake preparation zone in New Zealand region by Intercosmos-19 data

300000

200000

100000

The «hole» in the

Anomalous trajectories of HF waves propagation under different under different incidence angles on the modified area

Plasma bubbles effect is the signal scintillation up to complete loss of tracking the GPS signal сигнала (tracking)

unpredictable threats for the satellite navigation and communication

Solar flare – 8.3 min X-rays – few hours CMEs – 2-3 days

Nobody knows where and when the next earthquake will happen and seismo-ionospheric anomaly will form

How look like the seismoionospheric anomalies

Positive and negative deviations are possible

In GPS TEC language for GPS receivers located inside of the earthquake preparation zone

TEC, [TECu] - value of TEC for given time;

TEC_{CP}, [TECu] – running average value of TEC calculated for 15 previous values TEC for given time;

 σ – standard deviation calculated for 15 previous values of TEC for given time.

How it looks at GIM map

TEC difference with previous 15-days mean Source: IGS Center: Athens 2006 Date: 2006.01.07 UT: 12:00:00 LT: 13.5

Region with considerable increase of TEC over the epicenter 24 h before the earthquake M6.7.

How long it can exist

How large

R=10^{0.43M} km ~ 511 km

Magnitude	3	4	5	6	7	8	9
E a r t h q u a k e preparation zone radius ρ (km)	19,5	52.5	141	380	1022	2754	7413

Magnitude scaling

Wenchuan earthquake

1000UT

The GIMs observed at 08:00UT and global fixed 15:00 LT on day 3 before the 2008 Mw7.9 Sichuan Earthquake.

Liu et al., 2013

Magnetic storm and earthquake

Tohoku earthquake 38.3 N 142.4 E

TEC difference with previous 15-days mean Source: IGR Center: Sendai Date: 2011.03.08 UT: 06:00:00 LT: 15.5

Equatorial anomaly reaction on the middle latitude earthquakes

37.5 N

118.8 W

Mammoth Lake seismic swarm, May 25-27, 1980, 4 shocks M>6

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180

200 180 160

-200

-220

-240

lonospheric potential variations

Pulinets and Davidenko, 2014

Pure anomalous electric field effect

Ryu et al, JGR, 2014, accepted

Ion concentration distribution before Sumatra M8.7 EQ of 27 March 2005

Vertical profiles modification

Scale Height variations

Mammoth Lake May 1980, USA

> Wenchuan May 2008, China

Tohoku, 2011, tomography

Hattori et al., 2014

Self similarity of earthquake precursors

Day(s) from the occurence of earthquakes

Formal determination of self similarity

We represent the state of the ionosphere prior to the event in the form of an A_{ij} matrix whose columns contain the hourly deviations of foF2from its median value. The number of columns in the matrix is determined by an expected time interval between a precursor and an event. In this paper, we assume that this interval does not exceed six days and, respectively, the dimension of the A_{ij} matrix is 24×6 , i.e., i = 1...24, j = 1...6.

For all events we form matrices in the same manner and obtain an $A_{ij}^{(n)}$ series, where *n* is the ordinal number of an event. We now introduce the value

$$S_n = \frac{\sum_{i,j} \langle A_{ij}^{(n)} \rangle_n^2}{\langle \sum_{i,j} (A_{ij}^{(n)})^2 \rangle_n},$$

where $\langle ... \rangle_n$ means averaging over an ensemble of *n* events. S_n is the dispersion normalized so that $S_1 = 1$.

With the help of S_n , it is convenient to characterize the degree of $A_{ij}^{(n)}$ similarity at various *n*. For example, if $A_{ij}^{(n)}$ values for various events do not correlate with one another, the S_n series tends to unity at $n \longrightarrow \infty$. In the other extreme case, when the states of the ionosphere prior to all events are completely identical, S_n increases: $S_n \sim n$ at $n \longrightarrow \infty$.

Fig. 2. Behavior of the S_n parameter for two groups of deepfocus earthquakes: a series of 23 (curve 1) and 30 (curve 2) events. Dashed and solid curves: theoretical curves for a similar state and noncorrelated states of the ionosphere prior to any earthquake in the series, respectively.

Characteristic patterns of the ionospheric precursor

EQ G5

EQ G6

EQ G7

EQ G8

Ionospheric precursor mask for Greece earthquakes with M≥6.0

Real time alarms for Greece

L'Aquila, 6 April 2009

Few words on the physical

mechanism

Volcano eruption

18.04.2010 18:00 UT

3

2

1

0

-1

-2

-3

-4

Sand storm

Nuclear explosion

Modeling

Kuo et al., JGR, 2011

Klimenko et al., ASR, 2011

3 most comprehensive ionospheric first principal ionospheric models (Huba, Namgaladze, Klimenko) show ionospheric anomalies are of electric field origin ³²

Conclusions

- Seismically induced ionospheric variability is unpredictable from the point of view of ionosphere modeling
- Using the mask conception gives opportunity to automatically identify the regular component of the ionospheric variability associated with seismic activity
- Multiparameter precursors monitoring and precursors synergy permits using the temporal sequence of precursors anticipate ionospheric anomalies using precursors apearing earlier

Thanks for your attention