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1 Introduction

In this exercise we want to simulate a simple model of a neuron called Integrate-and-Fire model. (For more
information read the textbook of Dayan and Abbott, p.162-165 – and also the text starting at p.153). In
this model, the dendritic tree is not simulated. We assume that all inputs from the dendritic tree (excitatory
and inhibitory) are summed up in some way to build a total incoming current. The neuron accumulates
this total incoming current in the soma until a voltage threshold is reached. This will trigger an action
potential thereby resetting the membrane potential back to its resting potential. Because the cell membrane
of the neuron is leaky, the neuron will lose its accumulated charge over time. Therefore the neuron will not
fire if the accumulation of charge is too slow. We will make the simplified assumption that the resistance
(leakiness) of the cell membrane is constant.

2 The basic equation

If we neglect for a moment that the neuron will fire an action potential after reaching a voltage threshold,
the change in membrane voltage (written symbolically as dV (t)

dt ) can be described by the following di↵erential
equation (Don’t be scared if you do not know what a di↵erential equation is. The meaning of the equation
is very intuitive!):

⌧m
dV (t)

dt
= (EL � V (t)) +RmIe(t) (1)

Here ⌧m = 0.010 s is the so called membrane time constant, describing how fast current is leaking through
the membrane. EL is the resting membrane potential (-0.065 V), V (t) is the actual potential as a function of
time. Rm is the constant total membrane resistance (107 Ohms) and Ie(t) is the fluctuating incoming current.

3 Numerical simulation

The equation tells us how much the membrane voltage is going to change depending on V (t) and Ie(t). To
get the voltage at some later time, we have to sum up the small changes dV (t) for the small time steps dt.
For this we need to know Ie(t). The procedure is:

1. Calculate dV (t) by using the current values for V (t) and Ie(t).

2. Add dV (t) to V (t) to get the new voltage at V (t+ dt).

3. Check if the threshold voltage Vth = �0.050 V is reached, for producing an action potential. If so, set
V (t+ dt) down to the reset voltage Vreset = �0.065 V . We do not simulate the action potential itself.
We simply treat the action potential as a discharge and reset the voltage.

4. Return to 1. but now use values V (t+ dt) and Ie(t+ dt).

5. Repeat until tfinal is reached.

To calculate dV (t), we rewrite formula (1) as:
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dV (t) =
1

⌧m
((EL � V (t)) +RmIe(t)) · dt (2)

Our calculation scheme will be only accurate if we take dt small enough – smaller than 0.001 s. The external
currents Ie will have to be very small (in the 10�9 Ampere range) to mimic actual conditions. Note that
quantities in MATLAB don’t have units (like Amperes and seconds) so you should simply input parameters
in a consistent set of units and interpret the results according to that.

4 Questions

1: Describe equation (1) in words

2: Now implement the Integrate-and-Fire model for constant input currents. Let Ie(t) be a positive constant
in a reasonable range and set the parameters as described above. Choose dt to be small enough to get smooth
results (this will depend on your choice of Ie(t)). Plot the voltage as a function of time including a number
of voltage resets as the threshold potential was reached. (If you cannot get resets, your Ie is probably too
small.) Comment your code properly and add it, with the later codes, to the printout of your homework!

3: Try di↵erent constant values for Ie and produce a graph showing how the firing rate changes with Ie.
(The firing rate is defined as the number of threshold crossings (action potentials) per second.) You can
either do this by hand or write a MATLAB program doing it for you. What is approximately the minimum
value for Ie that the cell starts to produce action potentials at all?

4: Try two other choices for Ie(t) (A periodic function for example). Add the graphs showing the current
and voltage traces to your notes.

Bonus problems:

5: Real neurons are noisy. Add Gaussian noise to the Integrate-and-Fire model with a constant current
input. You can do this by generating a random number from a Gaussian distribution (MATLAB command:
randn), and adding it to the voltage at each time step. Investigate how adding noise a↵ects the timing
precision of spikes (i.e. how much jitter there is in the time at which spiking thresholds are crossed).

6: Real neurons have a refractory period. This can be modeled in our integrate-and-fire model by adding
an extra inhibitory current. The equation for the spike rate changes to:

⌧m
dV (t)

dt
= (EL � V (t))� rmgsra(t)(V (t)� EK) +RmIe(t) (3)

The spike-rate adaptation conductance gsra(t) is given by the di↵erential equation:

⌧sra
dgsra(t)

dt
= �gsra(t) (4)

given a time constant ⌧sra (see eqs. 5.13 and 5.14 in Dayan and Abbott, and Fig. 5.6). Whenever the
neuron fires a spike, gsra is increased by an amount �gsra. You can set the initial value of gsra to zero. Im-
plement this improvement to the Integrate-and-Fire model without noise (using the values rm�gsra = 0.06,
⌧sra = 0.10 s, and EK = �0.07 V , as in caption to Fig. 5.6) and investigate how the refractory period
depends on the parameters of the extra current.
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