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1. Introduction

1.1. Dynamical Systems. Let M be a set and

f : M →M

be a map. We think of M as a “phase space” of possible states of the system, and the
map f as the “law of evolution” of the system. Then, given an “initial condition” x0 ∈M
we have a sequence given by x1 = f(x), x2 := f 2(x) = f(f(x)) = f ◦ f(x) and generally
xn := fn(x) = f ◦ · · · ◦ f(x) given by the n’th composition of the map f with itself.

The main goal of the theory of Dynamical Systems is to describe tand classify the possible
structures which arise from the he iteration of such maps. If x ∈M then we let

O+(x) := {fn(x)}n≥0

denote the (forward) orbit or trajectory of the point x. The simplest kind of orbit is when
x happens to be a fixed point, i.e. f(x) = x in which case of course the whole forward orbit
reduces to the point x, i.e. O+(x) = {x}. The next simplest kind of orbit is the case in
which there exists some k > 0 such that fk(x) = x. The point x is then called a periodic
point and the minimal k > 0 for which fk(x) = x is called the (minimal) period of x. Then
the forward orbit of the point x is just the finite set O+(x) = {x, f(x), ..., fk−1(x)}. Notice
that a fixed point is just a special case of a periodic orbit with k = 1. Fixed and periodic
orbits are very natural structures and a first approach to the study of dynamical systems
is to study the existence of fixed and periodic orbits. Such orbits however generally do
not exhaust all the possible structures in the system and we need some more sophisticated
tools and concentps.

1.2. Topological and probabilistic limit sets. If the orbit of x is not periodic, then
O+(x) is a countable set and the problem of describing this set becomes non-trivial (in
practice even describing a periodic orbit can be non trivially in specific situations, especially
if the orbit is large, but at least in these cases it is at least theoretically possible to describe
it completely by identifying the finite points on the orbit). Generally we need to have
additional properties on the set M . For example if M is a topological space then we can
define the omega-limit of a point x as

ω(x) := {y : fnj(x)→ y for some nj →∞}.

The simplest kind of omega-limit is a single point p, so that the iterates fn(x) converge to
p as n → ∞, however omega-limits can also be geometrically extremely complicated sets
with fractal structure, or they can even be the entire set if O+(x) is dense in M (notice
that O+(x) can not itself be the entire set Msince this is just a countable set).

Considering in addition the measurable structure on M given by the Borel sigma-algebra,
we can also use measures to describe orbits. Indeed, let

M := {µ : µ is a (Borel) probability measure on M}.

It is clear that M 6= ∅ since it contains for example all Dirac-δ measures. We recall that
the Dirac-δ measure δx on a point x ∈ M is defined by δx(A) = 1 if x ∈ A and δx(A) = 0
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if x /∈ A. For any x ∈M we can define a probabilistic analogue of the ω-limit set by

ωprob(x) :=

{
µ ∈M :

1

nj

n−1∑
i=0

δf i(x) → µ for some nj →∞

}
The convergence above is meant in the weak-star topology. We recall that by definition
µnj → µ if and only if

∫
ϕdµnj →

∫
ϕdµ for all ϕ ∈ C0(M,R). In the particular case in

which the sequence µnj is given by the form above, we have∫
ϕd

(
1

nj

nj−1∑
i=0

δf i(x)

)
=

1

n

nj−1∑
i=0

∫
ϕdδf i(x) =

1

nj

nj−1∑
i=0

∫
ϕ(f i(x)) =

1

nj

nj−1∑
i=0

∫
ϕ ◦ f i(x)

The sum on the right is sometimes called the time average of the “observable” ϕ along the
orbit of x. From this, we can rewrite the definition of probabilistic limit set of x as{

µ ∈M :
1

nj

nj−1∑
i=0

∫
ϕ ◦ f i(x)→

∫
ϕdµ for all ϕ ∈ C0(M,R), for some nj →∞

}
Since M is compact, M is also compact and so ωprob(x) 6= ∅. However, as we will discuss
later, there is a crucial difference between the cases in which the sequence µn actually
converges, and therefore ωprob(x) is a single probability measure, and the case in which it has
several limit points. We will therefore be particularly interested in establishing situations
in which probabilistic omega limit set is a single probability measure. To address this
question we start with a probability measure µ ∈M and define the “basin of attraction”

Bµ :=

{
x ∈M :

1

n

n−1∑
i=0

∫
ϕ ◦ f i(x)→

∫
ϕdµ ∀ ϕ ∈ C0(M,R)

}
.

By definition, any point x ∈ Bµ has the property that its asymptotic distribution in space
is well described by the measure µ. We will investigate conditions below which guarantee
that Bµ is non-empty and even large in a certain sense.

1.3. Physical measures. If the space M of our dynamical systems has an underlying
reference measure, such as Lebesgue measure, then it is a particularly interesting question
to find a measure µ whose basin has positive or even full Lebesgue measure since this
means that we are able to describe the the asymptotic distribution of a large set of points.
Motivated by this observation we make the following definition.

Definition 1. A probability measure µ ∈M is called a physical measure if Leb(Bµ) > 0.

The question which motivates a lot of the material in this course is therefore:

when does a dynamical system admit a physical measure?

and, if it does admit physical measures,

how many physical measures does it have?
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Note that by definition a system can have at most a countable number of physical measure,
but each of these is in some sense an “attractor” for a certain set of points and therefore
the question is about the number of possible asymptotic distributions of “most” points.

This turns out to be a very challenging problem that has not yet been solved in general
and there are many examples of systems which do not have physical measures,for example
the identity map. However it is “hoped” that this is an exceptional situation.

Conjecture 1 (Palis conjecture). Most systems have a finite number of physical measures
such that the union of their basins has full Lebesgue measure.

In these notes we give an introduction to some of the results and techniques which have
been developed in this direction. In Section 2 we introduce the notion of invariant measure
and of ergodic measure and show that such measures exist under some very mild assump-
tions on the dynamical systems. In Section 3 we study the basins of attractions of measures
which are both invariant and ergodic and prove a fundamental Theorem of Birkhoff that
these basins are non-empty and are even “large” in the sense that µ(Bµ) = 1. In Sections
4 and 5 we consider two examples of one-dimensional dynamical systems (irrational circle
rotations and piecewise affine full branch expanding maps) in which Lebesgue measure it-
self is invariant and ergodic and therefore, by Birkhoff’s theorem, is a physical measure. In
Section 6 we define a much more general class of full branch maps which are not piecewise
affine but have a “bounded distortion” property, and show that for these maps Lebesgue
measure is still ergodic even if it is not invariant.

2. The Space of Invariant and Ergodic Measures

2.1. Definitions and basic examples.

Definition 2. Let µ ∈M.

(1) µ is f -invariant if µ(f−1(A)) = µ(A) for all A ∈ B;
(2) µ is ergodic if f−1(A) = A and µ(A) > 0 implies µ(A) = 1 for all A ∈ B.

These two notions are completely independent of each other, as a measure can be in-
variant without being ergodic and can be ergodic without being invariant.

Exercise 1. A set A ⊆ M is fully invariant if f−1(A) = A. Show that if A is fully
invariant, letting Ac := M \ A denote the complement of A, then f−1(Ac) = Ac and that
both f(A) = A and f(Ac) = Ac.

Exercise 2. Show that if f is invertible then then µ is invariant if and only if µ(f(A)) =
µ(A). Find an example of a non-invertible map and a measure µ for which the two condi-
tions are not equivalent.

We will however be particularly interested in measures which are both ergodic and
invariant. We give a few simple example here, further examples will be studied in detail
in the following sections.
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Example 1. Let X be a measure space and f : X → X a measurable map. Suppose
f(p) = p. Then the Dirac measure

δp(A) :=

{
1 p ∈ A
0 p /∈ A

is invariant and ergodic. Indeed, let A ⊂ I be a measurable set. We consider two cases. For
the first case, suppose p ∈ A, then δp(A) = 1. In this case we also clearly have p ∈ f−1(A)
(notice that p might have multiple preimages, but the point p itself is certainly one of
them). Therefore δp(f

−1(A) = 1, and the result is proved in this case. For the second
case, suppose p /∈ A. Then δp(A) = 0 and in this case we also have p /∈ f−1(A). Indeed,
if we did have p ∈ f−1(A) this would imply, by definition of f−1(A) = {x : f(x) ∈ A},
that f(p) ∈ A contradicting our assumption. Therefore we have δp(f

−1(A)) = 0 proving
invariance in this case. Ergodicity is trivial in this case.

Example 2. An immediate generalization is the case of a measure concentrated on a finite
set of points {p1, . . . , pn} each of which carries some proportion ρ1, . . . , ρn of the total mass,
with ρ1 + · · ·+ ρn = 1. Then, we can define a measure δP by letting

δP (A) :=
∑
i:pi∈A

ρi.

Then δP is invariant if and only if ρi = 1/n for every i = 1, . . . , n. Also in this case,
ergodicity follows automatically.

Example 3. Let f : M → M be the identity map, then every probability measure is
invariant, but the only ergodic measures are the Dirac delta measures on the fixed points.

Example 4. Let I = [0, 1], κ ≥ 2 an integer, and let f(x) = κx mod 1. Then it is easy
to see that Lebesgue measure is invariant. It is also ergodic but this is non trivial and we
will prove it below. Notice that f also has an infinite number of periodic orbits and thus
has an infinite number of ergodic invariant measures. We will show below that it actually
has an uncountable number of distinct ergodic non-atomic invariant measures.

Example 5. Let f : [0, 1]→ [0, 1] given by

f(x) =


.5− 2x if 0 ≤ x < .25

2x− .5 if .25 ≤ x < .75

−2x+ 2.5 if .75 ≤ x ≤ 1

It is easy to see that the two halves of the interval are each fully invariant and therefore
Lebesgue measure is invariant but not ergodic.

2.2. The spaces of invariant and ergodic probability measures. Recall that

M := {probability measure on M}.
We let

Mf := {µ ∈M : µ is f -invariant}
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and
Ef := {µ ∈M : µ is f -invariant and ergodic.}

Clearly
Ef ⊆Mf ⊆M.

There is no a priori reason for either Ef or Mf to be non-empty. However the following
results show that this is indeed the case as long as M is compact and f is continuous.
They also show that every invariant measure can be written as a combination of ergodic
measures.

Theorem 1. Let M be compact and f : M → M continuous. Then Mf is non-empty,
convex, and compact. Moreover Ef is non-empty and µ ∈ Ef if and only if µ is an extremal1

point of Mf .

An immediate Corollary which follows from Choquet’s Theorem for non-empty compact
convex sets is the following

Corollary 2.1 (Ergodic decomposition). Let M be compact and f : M →M continuous.
Then there exists a unique probability measure µ̂ onMf such that µ(Ef ) = 1 and such that
for all µ ∈Mf and for all continuous functions ϕ : M → R we have∫

M

ϕdµ =

∫
Ef

(∫
M

ϕdν

)
dµ̂

In the rest of this section we prove Theorem 1.

2.3. Push-forward of measures. We start with a key definition and some related results.

Definition 3 (Push-forward of measures). Let

f :M→M
be the map from the space of probability measures to itself, defined by

(1) f∗µ(A) := µ(f−1(A)).

We call f∗µ the push-forward of µ by f .

Exercise 3. f∗µ is a probability measure and so the map f∗ is well defined.

It follows immediately from the definition that µ is invariant if and only if f∗µ = µ.
Thus the problem of the existence of invariant measures is a problem of the existence of
fixed points of f∗. We cannot however apply any general fixed point result, rather we will
consider a sequence inM and show that any limit point is invariant. For any µ ∈M and
any i ≥ 1 we also let

f i∗µ(A) := µ(f−i(A)).

We now prove some simple properties of the map f∗.

1Recall that Mf is convex if given any µ0, µ1 ∈ Mf , letting µt := tµ0 + (1 − t)µ1 for t ∈ [0, 1], then
µt ∈Mf . Moreover, an extremal point of a convex set A is a point µ such that if µ = tµ0 + (1− t)µ1 for
µ0, µ1 ∈Mf with µ0 6= µ1 then t = 0 or t = 1.
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Lemma 2.1. For all ϕ ∈ L1(µ) we have
∫
ϕd(f∗µ) =

∫
ϕ ◦ fdµ.

Proof. First let ϕ = 1A be the characteristic function of some set A ⊆ X. Then∫
1Ad(f∗µ) = f∗µ(A) = µ(f−1(A)) =

∫
1f−1(A)dµ =

∫
1A ◦ fdµ.

The statement is therefore true for characteristic functions and thus follows for general
integrable functions by standard approximation arguments. More specifically, it follows
immediately that the result also holds if ϕ is a simple function (linear combination of
characteristic functions). For ϕ a non-negative integrable function, we use the fact that
every measurable function ϕ is the pointwise limit of a sequence ϕn of simple functions; if
f is non-negative then ϕn may be taken non-negative and the sequence {ϕn} may be taken
increasing. Then, the sequence {ϕn ◦ f} is clearly also an increasing sequence of simple
functions converging in this case to ϕ◦ f . Therefore, by the definition of Lebesgue integral
we have

∫
ϕnd(f∗µ)→

∫
ϕd(f∗µ) and

∫
ϕn◦fdµ→

∫
ϕ◦fdµ Since we have already proved

the statement for simple functions we know that
∫
ϕnd(f∗µ) =

∫
ϕn ◦ fdµ for every n and

therefore this gives the statement. For the general case we repeat the argument for positive
and negative parts of ϕ as usual. �

Corollary 2.2. f∗ :M→M is continuous.

Proof. Consider a sequence µn → µ in M. Then, by Lemma 2.1, for any continuous
function ϕ : X → R we have∫

ϕd(f∗µn) =

∫
ϕ ◦ fdµn →

∫
ϕ ◦ fdµ =

∫
ϕd(f∗µ)

which means exactly that f∗µn → f∗µ which is the definition of continuity. �

Corollary 2.3. µ is invariant if and only if
∫
ϕ ◦ fdµ =

∫
ϕdµ for all ϕ : X → R cts.

Proof. Suppose first that µ is invariant, then the implication follow directly from Lemma
2.1. For the converse implication, we have that∫

ϕdµ =

∫
ϕ ◦ fdµ =

∫
ϕdf∗µ

for every continuous function ϕ : X → R. By the Riesz Representation Theorem, measures
correspond to linear functionals and therefore this can be restated as saying that µ(ϕ) =
f∗µ(ϕ) for all continuous functions ϕ : X → R, and therefore µ and f∗µ must coincide,
which is the definition of µ being invariant. �

2.4. Existence of invariant measures.

Proposition 2.1 (Krylov-Boguliobov Theorem). Mf is non-empty, convex and compact.

Proof. Recall first of all that the space M of probability measures can be identified with
the unit ball of the space of functionals C∗(M) dual to the space C0(M,R) of continuous
functions on M . The weak-star topology is exactly the weak topology on the dual space
and therefore, by the Banach-Alaoglu Theorem,M is weak-star compact if M is compact.
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Our strategy therefore is to use the dynamics to define a sequence of probability measures
in M and show that any limit measure of this sequence is necessarily invariant.

For an arbitrary µ0 ∈M we define, for every n ≥ 1,

(2) µn =
1

n

n−1∑
i=0

f i∗µ0.

Since each f i∗µ0 is a probability measure, the same is also true for µn. By compactness
of M there exists a measure µ ∈ M and a subsequence nj → ∞ with µnj → µ. By
the continuity of f∗ we have f∗µnj → f∗µ. and therefore it is sufficient to show that also
f∗µnj → µ. We write

f∗µnj = f∗

(
1

nj

nj−1∑
i=0

f i∗µ0

)
=

1

nj

nj−1∑
i=0

f i+1
∗ µ0 =

1

nj

(
nj−1∑
i=0

f i∗µ0 − µ0 + f
nj
∗ µ0

)

=
1

nj

nj−1∑
i=0

f i∗µ0 −
µ0

nj
+
f
nj
∗ µ0

nj
= µnj +

µ0

nj
+
f
nj
∗ µ0

nj

Since the last two terms tend to 0 as j →∞ this implies that f∗µnj → µ and thus f∗µ = µ
which implies that µ ∈Mf . The convexity is an easy exercise. To show compactness, sup-
pose that µn is a sequence inMf converging to some µ ∈M. Then, by Lemma 2.1 we have,
for any continuous function ϕ, that

∫
f ◦ ϕdµ = limn→∞

∫
f ◦ ϕdµn = limn→∞

∫
fdµn =∫

fdµ. Therefore, by Corollary 2.3, µ is invariant and so µ ∈Mf . �

2.5. Ergodic measures are extremal.

Proposition 2.2. µ ∈ Ef if and only if µ is an extremal element of Mf .

Proof. Suppose first that µ is not ergodic, we will show that it cannot be an extremal
point. By the definition of ergodicity, if µ is not ergodic, then there exists a set A with

f−1(A) = A, f−1(Ac) = Ac and µ(A) ∈ (0, 1).

Define two measures µ1, µ2 by

µ1(B) =
µ(B ∩ A)

µ(A)
and µ2(B) =

µ(B ∩ Ac)
µ(Ac)

.

µ1 and µ2 are probability measures with µ1(A) = 1, µ2(Ac) = 1, and µ can be written as

µ = µ(A)µ1 + µ(Ac)µ2

which is a linear combination of µ1, µ2:

µ = tµ1 + (1− t)µ2 with t = µ(A) and 1− t = µ(Ac).

It just remains to show that µ1, µ2 ∈ Mf , i.e. that they are invariant. Let B be an
arbitrary measurable set. Then, using the fact that µ is invariant by assumption and that
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f−1(A) = A we have

µ1(f−1(B)) :=
µ(f−1(B) ∩ A)

µ(A)
=
µ(f−1(B) ∩ f−1(A))

µ(A)
=
µ(f−1(B ∩ A))

µ(A)
=
µ(B ∩ A)

µ(A)
= µ1(B)

This shows that µ1 is invariant. The same calculation works for µ2 and so this completes
the proof in one direction.

Now suppose that µ is ergodic and suppose by contradiction that µ is not extremal so
that µ = tµ1 + (1− t)µ2 for two invariant probability measures µ1, µ2 and some t ∈ (0, 1).
We will show that µ1 = µ2 = µ, thus implying that µ is extremal. We will show that
µ1 = µ, the argument for µ2 is identical. Notice first of all that µ1 � µ and therefore, by
the Radon-Nykodim Theorem, it has a density h1 := dµ1/dµ such that for any measurable
set we have µ1(A) =

∫
A
h1dµ. The statement that µ1 = µ is equivalent to the statement

that h1 = 1 µ-almost everywhere. To show this we define the sets

B := {x : h1(x) < 1} and C := {x : h1(x) > 1}

and will show that µ(B) = 0 and µ(C) = 0 implying the desired statement. We give the
details of the proof of µ(B) = 0, the argument to show that µ(C) = 0 is analogous. Firstly

µ1(B) =

∫
B

h1dµ =

∫
B∩f−1(B)

h1dµ+

∫
B\f−1B

h1dµ

and

µ1(f−1B) =

∫
f−1B

h1dµ =

∫
B∩f−1(B)

h1dµ+

∫
f−1B\B

h1dµ

Since µ1 is invariant, µ1(B) = µ1(f−1B) and therefore,∫
B\f−1B

h1dµ =

∫
f−1B\B

h1dµ.

Notice that

µ(f−1B \B) = µ(f−1(B))− µ(f−1B ∩B) = µ(B)− µ(f−1B ∩B) = µ(B \ f−1B).

Since h1 < 1 on B \f−1B and and h1 ≥ 1 on f−1B \B and the value of the two integrals is
the same, we must have µ(B\f−1B) = µ(f−1B\B) = 0, which implies that f−1B = B (up
to a set of measure zero). Since µ is ergodic we have µ(B) = 0 or µ(B) = 1. If µ(B) = 1
we would get

1 = µ1(M) =

∫
M

h1dµ =

∫
B

h1dµ < µ(B) = 1

which is a contradiction. It follows that µ(B) = 0 and this concludes the proof. �

The final statement that Ef 6= ∅ follows from the general Krein-Millman Theorem which
says that Mf is therefore the closed convex hull of its extreme elements and thus, in
particular, the set Ef of extreme elements is non-empty.
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3. Dynamical implications of invariance and ergodicity

3.1. Poincaré Recurrence. Historically, the first use of the notion of an invariant mea-
sure is due to Poincaré who noticed the remarkable fact that it implies recurrence.

Theorem (Poincaré Recurrence Theorem, 1890). Let µ be an invariant probability measure
and A a measurable set with µ(A) > 0. Then for µ-a.e. point x ∈ A there exists τ > 0
such that f τ (x) ∈ A.

Proof. Let
A0 = {x ∈ A : fn(x) /∈ A for all n ≥ 1}.

Then it is sufficient to show that µ(A0) = 0. For every n ≥ 0, let

An = f−n(A0)

denote the preimages of A0. We claim that all these preimages are disjoint, i.e.

An ∩ Am = ∅
for all m,n ≥ 0 with m 6= n. Indeed, supppose by contradiction that there exists n > m ≥ 0
and x ∈ An ∩ Am. This implies

fn(x) ∈ fn(An ∩ Am) = fn(f−n(A0) ∩ f−m(A0)) = A0 ∩ fn−m(A0)

But this implies A0 ∩ fn−m(A0) 6= ∅ which contradicts the definition of A0 and this proves
disjointness of the sets An. From the invariance of the measure µ we have µ(An) = µ(A)
for every n ≥ 1 and therefore

1 = µ(X) ≥ µ(
∞⋃
n=1

An) =
∞∑
n=1

µ(An) =
∞∑
n=1

µ(A).

Assuming µ(A) > 0 would lead to a contradiction since the sum on the right hand side
would be infinite, and therefore we conclude that µ(A) = 0. �

Exercise 4. The finiteness of the measure µ plays a crucial role in this result. Find an
example of an infinite measure space (X̂, B̂, µ̂) and a measure-preserving map f : X̂ → X̂
for which the conclusions of Poincare’s Recurrence Theorem do not hold.

Remark 1. It does not follow immediately from the theorem that every point of A returns
to A infinitely often. To show that almost every point of A returns to A infinitely often let

A′′ = {x ∈ A : there exists n ≥ 1 such that fk(x) /∈ A for all k > n}
denote the set of points in A which return to A at most finitely many times. Again, we
will show that µ(A′′) = 0. First of all let

A′′n = {x ∈ A : fn(x) ∈ A and fk(x) /∈ A for all k > n}
denote the set of points which return to A for the last time after exactly n iterations.
Notice that A′′n are defined very differently than the A′n. Then

A′′ = A′′1 ∪ A′′2 ∪ A′′3 ∪ · · · =
∞⋃
n=1

A′′n.
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It is therefore sufficient to show that for each n ≥ 1 we have µ(A′′n) = 0. To see this
consider the set fn(A′′n). By definition this set belongs to A and consists of points which
never return to A. Therefore µ(fn(A′′n)) = 0. Moreover we have we clearly have

A′′n ⊆ f−n(fn(A′′n))

and therefore, using the invariance of the measure we have

µ(A′′n) ≤ µ(f−n(fn(A′′n))) = µ(fn(A′′n)) = 0.

3.2. Birkhoff’s Ergodic Theorem. A couple of decades after Poincaré’s theorem, Birkhoff
proved the following even more remarkable result which gives some qualitative results about
the recurrence in particular in the case in which the invariant measure is also ergodic.

Theorem 2 (Birkhoff, 1920’s). Let M be a measure space, f : M →M a measurable map,
and µ an f -invariant probability measure. Then, for every ϕ ∈ L1(µ) the limit

lim
n→∞

1

n

n−1∑
i=0

ϕ ◦ f i(x)

exists for µ almost every x. Moreover, if µ is ergodic, then

lim
n→∞

1

n

n−1∑
i=0

ϕ ◦ f i(x) =

∫
ϕdµ

for µ almost every x.

We can formulate this result informally by saying that when µ is ergodic the the time
averages converge to the space average as in the following

Corollary 3.1. Let µ be an f -invariant ergodic probability measure. For any Borel mea-
surable set A and µ-a.e. x we have

lim
n→∞

1

n
#{1 ≤ j ≤ n : f j(x) ∈ A} = µ(A).

Proof. Let ϕ = 1A be the characteristic function of A. Then

lim
n→∞

1

n
#{1 ≤ j ≤ n : f j(x) ∈ A} = lim

n→∞

1

n

n∑
i=1

1A(f i(x)) =

∫
1Adµ = µ(A).

�

We recall that the basin of attraction of an arbitrary measure µ ∈M is the set

Bµ :=

{
x :

1

n

n−1∑
i=0

ϕ ◦ f i(x)→
∫
ϕdµ for all ϕ : C0(M,R)

}
.

A priori there is no reason for this set to be non-empty.

Corollary 3.2. Let M be a compact Hausdorff space and µ an f -invariant ergodic proba-
bility measure. Then µ(Bµ) = 1.
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3.3. Existence of the limit for Birkhoff averages.

Proposition 3.1. Let µ be an f -invariant measure and ϕ ∈ L1(µ). Then

ϕf (x) := lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ f i(x)

exists for µ-almost every x.

We first prove a technical lemma. Let

I := {A ∈ B : f−1(A) = A}
be the collection of fully invariant sets of B and notice that I is a sub-σ-algebra. For
ψ ∈ L1(µ) let ψµ � µ denote the measure which has density ψ with respect to µ, i.e.
ψ = dψµ/dµ is the Radon-Nykodym derivative of ψµ with respect to µ. Let ψµ|I and µ|I
denote the restrictions of these measures to I. Then clearly ψµ|I � µ|I and therefore the
Radon-Nykodim derivative

ψI :=
dψµ|I
dµ|I

exists. This is also called the conditional expectation of ψ with respect to I

Lemma 3.1. Suppose ψI < 0 (resp ψI > 0). Then

lim sup
n→∞

1

n

n−1∑
i=0

ψ ◦ fk(x) ≤ 0

(
resp. lim inf

n→∞

1

n

n−1∑
i=0

ψ ◦ fk(x) ≥ 0

)
for µ almost every x.

Proof. Let

Ψn := max
k≤n

{
k−1∑
i=0

ψ ◦ f i
}

and A := {x : Ψn →∞}

Then, for x /∈ A, Ψn is bounded above and therefore

lim sup
n→∞

1

n

n−1∑
i=0

ψ ◦ fk ≤ lim sup
n→∞

Ψn

n
≤ 0

So it is sufficient to show that µ(A) = 0. To see this, first compare the quantities

Ψn+1 = max
1≤k≤n+1

{
k−1∑
i=0

ψ ◦ f i
}

and Ψn◦f = max
1≤k≤n

{
k−1∑
i=0

ψ ◦ f i+1

}
= max

1≤k≤n

{
k∑
i=1

ψ ◦ f i
}

The two sums are almost exactly the same except for the fact that Ψn+1 includes the
quantity ψ(x) and therefore we have

Ψn+1 =

{
ψ + Ψn ◦ f if Ψn ◦ f > 0

ψ if Ψn ◦ f < 0
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We can write this as

Ψn+1 −Ψn ◦ f = ψ −min{0,Ψn ◦ f}
Then of course, A is forward and backward invariant, and this in particular A ∈ I and
also Ψn ◦ f →∞ on A and therefore Ψn+1−Ψn ◦ f ↓ ψ for all x ∈ A. Therefore, using the
invariance of µ, by the Dominated Convergence Theorem, we have∫

A

Ψn+1 −Ψndµ =

∫
A

Ψn+1 −Ψn ◦ fdµ→
∫
A

ψdµ =

∫
A

ψIdµI

By definition we have Ψn+1 ≥ Ψn and therefore the integral on the right hand side is ≥ 0.
Thus if ψI < 0 this implies that µ(A) = µI(A) = 0. Replacing ψ by −ψ and repeating the
argument completes the proof.

�

Proof of Proposition 3.1 . Let ψ := ϕ − ϕI − ε. Since (ϕI)I = ϕI we have ψI = −ε < 0.
Thus, by Lemma 3.1 we have

lim sup
n→∞

1

n

n−1∑
i=0

ψ ◦ fk(x) = lim sup
n→∞

1

n

n−1∑
i=0

ϕ ◦ fk(x)− ϕI − ε ≤ 0

and therefore

lim sup
n→∞

1

n

n−1∑
i=0

ϕ ◦ fk(x) ≤ ϕI + ε

for µ almost every x. Now, letting ψ := −ϕ + ϕI + ε we have ψI = ε > 0 and therefore
again by Lemma 3.1 we have

lim inf
n→∞

1

n

n−1∑
i=0

ψ ◦ fk = − lim inf
n→∞

1

n

n−1∑
i=0

ϕ ◦ fk + ϕI + ε ≥ 0

which implies

lim inf
n→∞

1

n

n−1∑
i=0

ϕ ◦ fk ≤ ϕI + ε

for µ almost every x. Since ε > 0 is arbitrary we get that the limit exists and

ϕf := lim
n→∞

1

n

n−1∑
i=0

ϕ ◦ fk = ϕI

for µ almost every x. �

3.4. Existence of the limit for ergodic measures.

Lemma 3.2. The following two conditions are equivalent:

(1) µ is ergodic;
(2) if ϕ ∈ L1(µ) satisfies ϕ ◦ f = ϕ for µ almost every x. then ϕ is constant a.e.
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Proof. Suppose first that µ is ergodic and let ϕ ∈ L1 satisfy ϕ ◦ f = ϕ. Let

Xk,n := ϕ−1([k2−n, (k + 1)2−n)).

Since ϕ is measurable, the sets Xk,n are measurable. Moreover, since ϕ is constant along
orbits, the sets Xk,n are backward invariant a.e. and thus by ergodicity they have either
zero or full measure. Moreover, they are disjoint in n and their union is the whole of R and
so for each n there exists a unique kn such that µ(Xkn,n) = 1. Thus, letting Y = ∪n∈ZXkn,n

we have that µ(Y ) = 1 and ϕ is constant on Y . Thus ϕ is constant a.e..
Conversely, suppose that (2) holds and suppose that f−1(A) = A. Let 1A denote the

characteristic function of A. Then clearly 1A ∈ L1 and 1A ◦ f = 1A and so we either have
1A = 0 a.e. or 1A = 1 a.e. which proves that µ(A) = 0 or 1. �

Corollary 3.3. Let µ be an f -invariant ergodic probability measure and ϕ ∈ L1(µ). Then

ϕf (x) := lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ f i(x) =

∫
ϕdµ

exists for µ-almost every x.

Proof. Since ϕf = ϕI a.e., it follows that
∫
ϕfdµ =

∫
ϕIdµI =

∫
ϕdµ and in particular

ϕf ∈ L1. Since ϕf is also invariant along orbits, it follows that it is constant a.e. and
therefore ϕf =

∫
ϕdµ. �

3.5. Typical points for a measure.

Proof of Corollary 3.2. By Proposition 3.1 and Corollary 3.3, for every ϕ ∈ L1, the excep-
tional set where ϕf 6=

∫
ϕdµ has measure 0. This set depends in general on the function ϕ,

but since the union of a countable collection of sets of zero measure has zero measure, given
any countable collection {ϕm}∞m=1 we can find a common set of full measure for which the
time averages converge. In particular, since M is compact and Hausdorff, we can choose as
such a countable dense subset of continuous functions. Then, for any arbitrary continuous
function ϕ and arbitrary ε > 0, choose ϕm such that supx∈M |ϕ(x)− ϕm(x)| < ε. Then we
have

1

n

n−1∑
i=0

ϕ ◦ f i(x) =
1

n

n−1∑
i=0

ϕm ◦ f i(x) +
1

n

n−1∑
i=0

(ϕ ◦ f i(x)− ϕm ◦ f i(x))

The first sum converges as n → ∞ and the second sum is bounded by ε and therefore all
the limit points of the sequence on the left are within ε of each other. Since ε is arbitrary,
this implies that they converge. �

4. Unique Ergodicity and Circle Rotations

We now begin the study of specific classes of dynamical systems. We start with a class of
maps, circle rotations, for which Lebesgues measure is invariant and therefore the issue if
ergodicity. It is easy to see that Lebesgue measure is not ergodic is the rotation is rational.
On the other hand, if the rotation is irrational we have not only that Lebesgue measure
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is invariant and ergodic but that there are no other invariant probability measures at all.
Thus Mf = Ef = {Lebesgue}. Let S1 = R/Z.

Theorem 3. Let f : S1 → S
1 be the circle rotation f(x) = x+ α with α irrational. Then

Lebesgue measure is the unique invariant ergodic probability measure.

It follows immediately from Birkhoff’s ergodic theorem that the orbit O+(x) = {xn}∞n=0

of Lebesgue almost every point is uniformly distributed in S
1 (with respect to Lebesgue)

in the sense that for any arc (a, b) ⊂ S
1 we have

#{0 ≤ i ≤ n− 1 : xi ∈ (a, b)}
n

→ m(a, b).

As a consequence of the uniqueness of the invariant measure, in the case of irrational circle
rotations we get the stronger statement that this property holds for every x ∈ S1.

Theorem 4. Let f : S1 → S
1 be the circle rotation f(x) = x+ α with α irrational. Then

every orbit is uniformly distributed in S
1.

We shall prove these results in a more general framework.

Definition 4. We say that a map f : X → X is uniquely ergodic if it admits a unique
(ergodic) invariant probability measure.

Trivial examples of uniquely ergodic maps are contraction maps in which every orbit con-
verges to a unique fixed point p, and therefore δp is the unique ergodic invariant probability
measure.

Theorem 5. Let f : X → X be a continuous map of a compact metric space. Suppose
there exists a dense set Φ of continuous functions ϕ : X → R such that for every ϕ ∈ Φ
there exists a constant ϕ̄ = ϕ̄(ϕ) such that

(3)
1

n

n−1∑
j=0

ϕ ◦ f j → ϕ̄ uniformly.

Then f is uniquely ergodic. Conversely, suppose that f is uniquely ergodic, then for every
continuous function ϕ : X → R there exists a constant ϕ̄ = ϕ̄(ϕ) such that (3) holds.
Moreover, if µ is the unique invariant probability measure for f , then ϕ̄(ϕ) =

∫
ϕdµ.

Remark 2. The statement also holds for complex valued observables ϕ : X → C and we
will use the complex valued version in the proof of Theorem 3. We will prove it below for
real valued observables but the proox is exactly the same in the complex case.

Lemma 4.1. Let f : X → X be a continuous map of a compact metric space. Suppose
there exists a dense set Φ of continuous functions ϕ : X → R such that for every ϕ ∈ Φ
there exists a constant ϕ̄ = ϕ̄(ϕ) such that (3) holds. Then (3) holds for every continuous
function ϕ.
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Proof. To simplify the notation we let

Bn(x, ϕ) :=
1

n

n−1∑
i=0

ϕ ◦ f i(x).

By assumption, if ϕ ∈ Φ, there exists a constant ϕ̄ = ϕ̄(ϕ) such that Bn(x, ϕ) → ϕ̄
uniformly in x. Now let ψ : X → R be an arbitrary continuous function. Since Φ is dense,
for any ε > 0 there exists φ ∈ Φ such that supx∈X |ϕ(x)− ψ(x)| < ε. This implies

|Bn(x, ϕ)−Bn(x, ψ)| < ε

for every x, n and therefore∣∣∣∣sup
x,n

Bn(x, ψ)− ϕ̄
∣∣∣∣ < ε and

∣∣∣∣inf
x,n

Bn(x, ψ)− ϕ̄
∣∣∣∣ < ε

and so in particular ∣∣∣∣sup
x,n

Bn(x, ψ)− inf
x,n

Bn(x, ψ)

∣∣∣∣ < 2ε.

Since ε is arbitrary, this implies that Bn(x, ψ) converges uniformly to some constant ψ̄.
Notice that the function ϕ and therefore the constant ϕ̄ depends on ε, so what we have
shown here is simply that the inf and the sup are within 2ε of each other for arbitrary ε
and therefore must coincide. This shows that (3) holds for every continuous function. �

Lemma 4.2. Supppose that for any continuous function ϕ : X → R there exists a constant
ϕ̄ such that (3) holds. Then f is uniquely ergodic.

Proof. Given a continuous function ϕ, by Birkhoff’s Ergodic Theorem, for every ergodic
invariant probability measure µ we have

1

n

n−1∑
j=0

ϕ ◦ f j →
∫
ϕdµ.

Therefore, from (3) we have ∫
ϕdµ = ϕ̄(ϕ)

for every ergodic invariant measure µ. This clealry implies unique ergodicity since if
µ1, µ2 are ergodic invariant probability measures this implies

∫
ϕdµ1 =

∫
ϕdµ2 for every

continuous function ϕ and this implies µ1 = µ2. �

Proof of Theorem 5. Suppose that f is uniquely ergodic and µ is the unique ergodic in-
variant probability measure. Then by Birkhoff’s ergodic Theorem we have

1

n

n−1∑
j=0

ϕ ◦ f j(x)→
∫
ϕdµ
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for µ-a.e. x. We let ϕ̄ =
∫
ϕdµ and show that (3) holds. Suppose by contradiction that (3)

does not hold. Then by the negation of the definition of uniform continuity, there exists a
continuous function ϕ and ε > 0 and sequences xk ∈ X and nk →∞ for which∣∣∣∣∣ 1n

nk−1∑
i=0

ϕ(f i(xk))− ϕ̄

∣∣∣∣∣ ≥ ε

Define a sequence of measures

νk :=
1

n

nk−1∑
i=0

f i∗δxk =
1

n

nk−1∑
i=0

δf ixk .

Notice that for any x we have f i∗δx = δf i(x). Then, for every k we have∫
ϕdνk =

∫
ϕd

1

nk

nk−1∑
i=0

δf ixk =
1

nk

nk−1∑
i=0

∫
ϕdδf ixk =

1

nk

nk−1∑
i=0

ϕ(f i(xk))

and therefore ∣∣∣∣∫ ϕdνk − ϕ̄
∣∣∣∣ ≥ ε.

for every k. By the weak-star compactness of the space M of probability measures, there
exists a subsequence kj →∞ and a probability measure ν ∈M such that νkj → ν and∣∣∣∣∫ ϕdν − ϕ̄

∣∣∣∣ ≥ ε.

Moreover, arguing as in the proof of the Krylov-Boguliobov Theorem (Proposition 2.1) we
get2 that ν ∈Mf . Thus, by Birkhoff’s Ergodic Theorem, for ν-a.e. x the ergodic averages
converge to

∫
ϕdµ 6= ϕ̄. This implies that ν 6= µ contradicting the assumptions of unique

ergodicity. �

Proof of Theorem 3. It is sufficient to show that there exists a dense set of continuous
functions ϕ : S1 → C for which the Birkhoff time averages

Bn(ϕ, x) :=
1

n

n−1∑
i=0

ϕ ◦ f i(x)

converge uniformly to a constant. For any m ≥ 1, consider the functions

ϕm(x) := e2πimx = cos 2πmx+ i2πmx

2Indeed,

f∗νkj
= f∗

 1
nkj

nkj
−1∑

i=0

f i∗δxkj

 =
1
nkj

nkj
−1∑

i=0

f i+1
∗ δxkj

=
1
nkj

nkj
−1∑

i=0

f i∗δxkj
+

1
nkj

(
f
nkj
∗ δxkj

− δxkj

)
and therefore f∗νkj → ν as j →∞. Since νkj → ν by definition of ν and f∗νkj → f∗ν by continuity of f∗,
this implies f∗ν = ν and thus ν ∈Mf .
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and let Φ denote the space of all linear combinations of functions of the form ϕm. By a
classical Theorem of Weierstrass, Φ is dense in the soace of all continuous functions, thus
it is sufficient to show uniform convergence for functions in Φ. Moreover, notice that for
any two continuous functions ϕ, ψ we have

Bn(ϕ+ψ, x) :=
1

n

n−1∑
i=0

(ϕ+ψ)◦f i(x) =
1

n

n−1∑
i=0

(ϕ◦f i(x)+ψ ◦f i(x)) = Bn(ϕ, x)+Bn(ψ, x).

Thus, the Birkhoff averaging operator is linear in the observable and therefore to show the
statement for all functions in Φ it is sufficient to show it for each ϕm. To see this, notice
first of all that

ϕm ◦ f(x) = e2πim(x+α) = e2πimαe2πimx = e2πimαϕm(x)

and therefore, using |ϕm(x)| = 1 and the sum
∑n

j=0 x
j = (1− xn+1)/(1− x) we get∣∣∣∣∣ 1n

n−1∑
j=0

ϕm ◦ f j(x)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
j=0

e2πimjα

∣∣∣∣∣ =
1

n

|1− e2πimnα|
|1− e2πimα|

≤ 1

n

1

|1− e2πimα|
→ 0

The convergence is uniform because the upper bound does not depend on x. Notice that
we have used here the fact that α is irrational in an essential way to guarantee that the
denominator does not vanish for any m. Notice also that the convergence is of course not
uniform (and does not need to be uniform) in m. �

Proof of Theorem 4. Consider an arbitrary arc [a, b] ⊂ S
1. Then, for any ε > 0 there exist

continuous functions ϕ, ψ : S1 → R such that ϕ ≤ 1[a,b] ≤ ψ and such that
∫
ψ−ϕdm ≤ ε.

We then have that

lim inf
n→∞

1

n

n−1∑
j=0

1[a,b](xj) ≥ lim inf
n→∞

1

n

n−1∑
j=0

ϕ(xj) =

∫
ϕdm ≥

∫
ψdm− ε ≥

∫
1[a,b](xj)− ε

and

lim sup
n→∞

1

n

n−1∑
j=0

1[a,b](xj) ≤ lim sup
n→∞

1

n

n−1∑
j=0

ψ(xj) =

∫
ψdm ≤

∫
ϕdm+ ε ≤

∫
1[a,b](xj) + ε

Since ε is arbitrary, the limit exists and equals
∫
1[a,b]dm = |b− a| and thus the sequence

is uniformly distributed. �

4.1. Benford’s distribution. We give an interesting application of the uniform distribu-
tion result above. First of all we define the concept of a leading digit of a number a ∈ R.
We define the leading digit of a as the first non-zero digit in the decimal expansion of a.
Thus, if |a| ≥ 1 this is just the first digit of a. If |a| < 1 this is the first non-zero digit after
the decimal point. We shall use the notation

D(a) = leading digit of a.
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Definition 5. We say that the sequence {ai}∞i=0 has a Benford distribution if for every
d = 1, . . . , 9 we have

B(d) := lim
n→∞

#{0 ≤ i ≤ n− 1 : D(ai) = d}
n

= log10

(
1 +

1

d

)
.

This give the following approximate values:

B(1) = 0.301... ≈ 30%
B(2) = 0.176... ≈ 17%
B(3) = 0.124... ≈ 12%
B(4) = 0.096... ≈ 9%
B(5) = 0.079... ≈ 8%
B(6) = 0.066... ≈ 7%
B(7) = 0.057... ≈ 6%
B(8) = 0.051... ≈ 5%
B(9) = 0.045... ≈ 4%

Notice that
p∑
d=1

log10

(
1 +

1

d

)
= 1

so that B(d) are the probabilities of each digit d occuring as a laeding digit.

Remark 3. Remarkably, this distribution is observed in a variety of real-life data, mostly
in case in which there is a large amount of data across several orders of magnitude. It was
first observed by American astronomer Simon Newcombe in 1881 when he noticed that
the earlier pages of logarithm tables, containing numbers starting with 1, were much more
worn that other pages. This was rediscovered by physicist Frank Benford who discovered
that a wide amount of data followed this principle.

Proposition 4.1. Let k be any integer number that is not a power of ten. Then the
sequence {kn}∞n=1 satisfies Benford’s distribution.

We prove the Proposition in the following two lemmas.

Lemma 4.3. Let k be any integer number that is not a power of ten. Then the sequence
{log10 k

n mod 1}∞n=1 is uniformly distributed in S
1.

Proof of Proposition 4.1. Notice that log10 k
n = n log10 k and therefore it is sufficient to

show that the sequence {n log10 k mod 1}∞i=1 is uniformly distributed in S1. Since k is not
a power of 10 the number log10 k is irrational and this sequence can be seen as the sequence
of iterates of x0 = 0 under the irrational circle rotation f(x) = x+ log10 k and therefore is
uniformly distributed. �

Lemma 4.4. Let {ai}∞i=1 be a sequence of real numbers and suppose that the sequence
{log10 ai mod 1}∞i=1 is uniformly distributed in S

1. Then {ai}∞i=1 satisfies Benford’s distri-
bution.
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Proof. Notice first of all that for each ai we have

D(ai) = d ⇐⇒ d10j ≤ ai < (d+ 1)10j for some j ∈ Z
Therefore

D(ai) = d ⇐⇒ log10 d+ j ≤ log10 a1 ≤ log10(d+ 1) + j

or
D(ai) = d ⇐⇒ log10 d ≤ log10 ai mod 1 ≤ log10(d+ 1).

By assumption, {log10 ai} is uniformly distributed and therefore

lim
n→∞

#{1 ≤ i ≤ n : D(ai) = d}
n

= lim
n→∞

#{1 ≤ i ≤ n : log10 ai mod 1 ∈ (log10 d, log10(d+ 1)}
n

= log
d+ 1

d
= log10

(
1 +

1

d

)
.

�

5. Piecewise affine full branch maps

Definition 6. Let I ⊂ R be an interval. A map f : I → I is a full branch map if there
exists a finite or countable partition P of I (mod 0) into subintervals such that for each
ω ∈ P the map f |int(ω) : int(ω) → int(I) is a bijection. f is a piecewise continuous (resp.
C1, C2, affine) full branch map if for each ω ∈ P the map f |int(ω) : int(ω) → int(I) is a
homeomorphism (resp. C1 diffeomorphism, C2 diffeomorphism, affine).

The full branch property is extremely important and useful. It is a fairly strong property
but it turns out that the study of many maps which do not have this property can be
reduced to maps with the full branch property. In this section we start by studying the
case of piecewise affine full branch maps. We will prove the following.

Proposition 5.1. Let f : I → I be a piecewise affine full branch map. Then Lebesgue
measure is invariant and ergodic.

Example 6. The simplest examples of full branch maps are the maps f : [0, 1] → [0, 1]
defined by f(x) = κx mod 1 for some integer κ ≥ 1. In this case it is almost trivial to
check that Lebesgue measure is invariant. In the general case in which the branches have
different derivatives and if there are an infinite number of branches it is a simple exercise.

Exercise 5. Let f : I → I be a piecewise affine full branch map. Then Lebesgue measure
is invariant. We write f ′ω to denote the derivative of f on int(ω). In the general case (even
with an infinite number of branches) we have |ω| = 1/|f ′ω|. Thus, for any interval A ⊂ I
we have

|f−1(A)| =
∑
ω∈P

|f−1(A) ∩ ω| =
∑
ω∈P

|A|
|f ′ω|

= |A|
∑
ω∈P

1

|f ′ω|
= |A|

∑
ω∈P

|ω| = |A|.

Thus Lebesgue measure is invariant.
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Lemma 5.1. Let f : I → I be a continuous (resp. C1, C2, affine) full branch map.
Then there exists a family of partitions {P(n)}∞n=1 of I(mod 0) into subintervals such that
P(1) = P, each P(n+1) is a refinement of P(n), and such that for each n ≥ 1 and each
ω(n) ∈ P(n) the map fn : |int(ω(n)) : int(ω(n)) → int(I) is a homeomorphism (resp. a C1

diffeomorphism, C2 diffeomorphism, affine map).

Proof. For n = 1 we let P(1) := P where P is the partition in the definition of a full branch
map. Proceeding inductively, suppose that there exists a partition P(n−1) satisfying the
required conditions. Then each ω(n−1) is mapped by fn−1bijectively to the entire interval
I and therefore ω(n−1) can be subdivided into disjoint subintervals each of which maps
bijectively to one of the elements of the original partition P . Thus each of these subintervals
will then be mapped under one further iteration bijectively to the entire interval I. These
are therefore the elements of the partition P(n). �

Proof of Proposition 5.1. Let A ⊂ [0, 1) satisfying f−1(A) = A and suppose that |A| > 0.
We shall show that |A| = 1. Notice first of all that since f is piecewise affine, each element
ω ∈ P is mapped affinely and bijectively to I and therefore must have derivative strictly
larger than 1 uniformly in ω. Thus the iterates fn have derivatives which are growing
exponentially in n and thus, by the Mean Value Theorem, |ω(n)| → 0 exponentially (and
uniformly). By Lebesgue’s density Theorem, for any ε > 0 we can find n = nε sufficiently
large so that the elements of Pn are sufficiently small so that there exists some ω(n) ∈ P(n)

with |ω(n) ∩ A| ≥ (1− ε)|ω(n)| or, equivalently, |ω(n) ∩ Ac| ≤ ε|ω(n)| or

|ω(n) ∩ Ac|
|ω(n)|

≤ ε

Since fn : ω(n) → I is an affine bijection we have

|ω(n) ∩ Ac|
|ω(n)|

=
|fn(ωn ∩ Ac)|
|fn(ωn)|

.

Moreover, fn(ωn) = I and and since f−1(A) = A implies f−1(Ac) = Ac which implies
f−n(Ac) = Ac we have

fn(ω(n) ∩ Ac) = fn(ωn ∩ f−n(Ac)) = Ac.

We conclude that

(4)
|Ac|
|I|

=
|fn(ωn ∩ Ac)|
|fn(ωn)|

=
|ω(n) ∩ Ac|
|ω(n)|

≤ ε.

This gives |Ac| ≤ ε and since ε is arbitrary this implies |Ac| = 0 which implies |A| = 1 as
required. �

Remark 4. Notice that the “affine” property of f has been used only in two places: two
show that the map is expanding in the sense of Lemma ??, and in the last equality of (4).
Thus in the first place it would have been quite sufficient to replace the affine assumption
with a uniform expansivity assumption. In the first place it would be sufficient to have an
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inequality rather than an equality. We will show below that we can indeed obtain similar
results for full branch maps by relaxing the affine assumption.

5.1. Application: Normal numbers. The relatively simple result on the invariance
and ergodicity of Lebesgue measure for piecewise affine full branch maps has a remarkable
application on the theory of numbers. For any number x ∈ [0, 1] and any integer k ≥ 2 we
can write

x =
x1

k1
+
x2

k2
+
x3

k3
. . .

where each xi ∈ {0, . . . , k − 1}. This is sometimes called the expansion of x in base k and
is (apart from some exceptional cases) unique. Sometimes we just write

x = 0.x1x2x3 . . .

when it is understood that the expansion is with respect to a particular base k. For the
case k = 10 this is of course just the well known decimal expansion of x.

Definition 7. A number x ∈ [0, 1] is called normal (in base k) if its expansion x =
0.x1x2x3 . . . in base k contains asymptotically equal proportions of all digits, i.e. if for
every j = 0, . . . , k − 1 we have that

]{1 ≤ i ≤ n : xi = j}
n

→ 1

k
as n→∞.

Exercise 6. Give examples of normal and non normal numbers in a given base k.

It is not however immediately obvious what proportion of numbers are normal in any
given base nor if there even might exist a number that is normal in every base. We will
show that in fact Lebesgue almost every x is normal in every base.

Theorem 6. There exists set N ⊂ [0, 1] with |N | = 1 such that every x ∈ N is normal in
every base k ≥ 2.

Proof. It is enough to show that for any given k ≥ 2 there exists a set Nk with m(Nk) = 1
such that every x ∈ Nk is normal in base k. Indeed, this implies that for each k ≥ 2 the
set of points I \ Nk which is not normal in base k satisfies m(I \ Nk) = 0. Thus the set of
point I \ N which is not normal in every base is contained in the union of all I \ Nk and
since the countable union of sets of measure zero has measure zero we have

m(I \ N ) ≤ m

(
∞⋃
k=2

I \ Nk

)
≤

∞∑
k=2

m(I \ Nk) = 0.

We therefore fix some k ≥ 2 and consider the set Nk of points which are normal in
base k. The crucial observation is that the base k expansion of the number x is closely
related to its orbit under the map fk. Indeed, consider the intervals Aj = [j/k, (j + 1)/k)
for j = 0, . . . , k − 1. Then, the base k expansion x = 0.x1x2x3 . . . of the point x clearly
satisfies

x ∈ Aj ⇐⇒ x1 = j.



INTRODUCTION TO SMOOTH ERGODIC THEORY LECTURE NOTES 23

Moreover, for any i ≥ 0 we have

f i(x) ∈ Aj ⇐⇒ xi+1 = j.

Therefore the frequency of occurrences of the digit j in the expansion of x is exactly the
same as the frequence of visits of the orbit of the point x to Aj under iterations of the map
fk. Birkhoff’s ergodic theorem and the ergodicity of Lebesgue measure for fk implies that
Lebesgue almost every orbit spends asymptotically m(Aj) = 1/k of its iterations in each of
the intervals Aj. Therefore Lebesgue almost every point has an asymptotic frequence 1/k
of each digit j in its decimal expansion. Therefore Lebesgue almost every point is normal
in base k. �

6. Full branch maps with bounded distortion

We now want to relax the assumption that f is piecewise affine.

Definition 8. A full branch map has bounded distortion if

(5) sup
n≥1

sup
ω(n)∈P(n)

sup
x,y∈ω(n)

log |Dfn(x)/Dfn(y)| <∞.

Notice that the distortion is 0 if f is piecewise affine so that the bounded distortion
property is automatically satisfied in that case.

Theorem 7. Let f : I → I be a full branch map with bounded distortion. Then Lebesgue
measure is ergodic.

6.1. Bounded distortion implies ergodicity. We now prove Theorem 7. For any subin-
terval J and any n ≥ 1 we define the distortion of fn on J as

D(f,n J) := sup
x,y∈J

log |Dfn(x)/Dfn(y)|.

The bounded distortion condition says that D(fn, ω(n)) is uniformly bounded. The distor-
tion has an immediate geometrical interpretation in terms of the way that ratios of lengths
of intervals are (or not) preserved under f .

Lemma 6.1. Let D = D(fn, J) be the distortion of fn on some interval J . Then, for any
subinterval J ′ ⊂ J we have

e−D
|J ′|
|J |
≤ |f

n(J ′)|
|fn(J)|

≤ eD
|J ′|
|J |

Proof. By the Mean Value Theorem there exists x ∈ J ′ and y ∈ J such that |Dfn(x)| =
|fn(J ′)|/|J ′| and |Dfn(y)| = |fn(J)|/|J |. Therefore

(6)
|fn(J ′)|
|fn(J)|

|J ′|
|J |

=
|fn(J ′)|/|J ′|
|fn(J)|/|J |

=
|Dfn(x)|
|Dfn(y)|

From the definition of distortion we have e−D ≤ |Dfn(x)|/|Dfn(y)| ≤ eD and so substi-
tuting this into (6) gives

e−D ≤ |f
n(J ′)|
|fn(J)|

|J |
|J ′|
≤ eD
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and rearranging gives the result. �

Lemma 6.2. Let f : I → I be a full branch map with the bounded distortion property.
Then max{|ω(n)|;ω(n) ∈ P(n)} → 0 as n→ 0

Proof. First of al let δ = maxω∈P |ω| < |I| Then, from the combinatorial structure of
full branch maps described in Lemma 5.1 and its proof, we have that for each n ≥ 1
fn(ω(n)) = I and that fn−1(ω(n)) ∈ P , and therefore |fn−1(ω(n))| ≤ δ and |fn−1(ω(n−1) \
ω(n)|)| ≥ |I| − δ > 0. Thus, using Lemma 6.1 we have

|ω(n−1) \ ω(n)|
|ω(n−1)|

≥ e−D
|fn−1(ω(n−1) \ ω(n)|)|
|fn−1(ω(n−1))|

≥ e−D
|I| − δ
|I|

=: 1− τ.

Then

1− |ω(n)|
|ω(n−1)|

=
|ω(n−1)| − |ω(n)|
|ω(n−1)|

=
|ω(n−1) \ ω(n)|
|ω(n)|

≥ 1− τ.

Thus for every n ≥ 0 and every ω(n) ⊂ ω(n−1) we have |ω(n)|/|ω(n−1)| ≤ τ. Applying
this inequality recursively then implies |ω(n)| ≤ τ |ω(n−1)| ≤ τ 2|ω(n−2)| ≤ · · · ≤ τn|ω0| ≤
τn|∆|. �

Proof of Theorem 7. The proof is almost identical to the piecewise affine case. The only
difference is when we get to equation (4) where we now use the bounded distortion to get

(7)
|I \ A|
|I|

=
|fn(ωn \ A)|
|fn(ωn)|

≤ eD
|ωn \ A|
|ωn|

≤ eDε.

Since ε is arbitrary this implies m(Ac) = 0 and thus m(A) = 1. �

6.2. Sufficient conditions for bounded distortion. In other cases, the bounded dis-
tortion property is not immediately checkable, but we give here some sufficient conditions.

Definition 9. A full branch map f is uniformly expanding if there exist constant C, λ > 0
such that for all x ∈ I and all n ≥ 1 such that x, f(x), . . . , fn−1(x) /∈ ∂P we have
|(fn)′(x)| ≥ Ceλn.

Theorem 8. Let f be a full branch map. Suppose that f is uniformly expanding and that
there exists a constant K > 0 such that

(8) sup
ω∈P

sup
x,y∈ω

|f ′′(x)|/|f ′(y)|2 ≤ K.

Then there exists K̃ > 0 such that for every n ≥ 1, ω(n) ∈ P(n) and x, y ∈ ω(n) we have

(9) log
|Dfn(x)|
|Dfn(y)|

≤ K̃|fn(x)− fn(y)| ≤ K̃.

In particular f satisfies the bounded distortion property.

The proof consists of three simple steps which we formulate in the following three lemmas.
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Lemma 6.3. Let f be a full branch map satisfying (8). Then, for all ω ∈ P, x, y ∈ ω we
have

(10)

∣∣∣∣f ′(x)

f ′(y)
− 1

∣∣∣∣ ≤ K|f(x)− f(y)|.

Proof. By the Mean Value Theorem we have |f(x) − f(y)| = |f ′(ξ1)||x − y| and |f ′(x) −
f ′(y)| = |f ′′(ξ2)||x− y| for some ξ1, ξ2 ∈ [x, y] ⊂ ω. Therefore

(11) |f ′(x)− f ′(y)| = |f
′′(ξ2)|
|f ′(ξ1)|

|f(x)− f(y)|.

Assumption (8) implies that |f ′′(ξ2)|/|f ′(ξ1)| ≤ K|f ′(ξ)| for all ξ ∈ ω. Choosing ξ = y
and substituting this into (11) therefore gives |f ′(x) − f ′(y)| = K|f ′(y)||f(x) − f(y)| and
dividing through by |f ′(y)| gives the result. �

Lemma 6.4. Let f be a full branch map satisfying (10). Then, for any n ≥ 1 and ω(n) ∈ Pn
we have

(12) Dist(fn, ω(n)) ≤ K
n∑
i=1

|f i(x)− f i(y)|

Proof. By the chain rule f (n)(x) = f ′(x) · f ′(f(x)) · · · f ′(fn−1(x)) and so

log
|f (n)(x)|
|f (n)(y)|

= log
n∏
i=1

|f ′(f i(x))|
|f ′(f i(y))|

=
n−1∑
i=0

log

∣∣∣∣f ′(f i(x))

f ′(f i(y))

∣∣∣∣
=

n−1∑
i=0

log

∣∣∣∣f ′(f i(x))

f ′(f i(y))
− f ′(f i(y))

f ′(f i(y))
+
f ′(f i(y))

f ′(f i(y))

∣∣∣∣
=

n−1∑
i=0

log

∣∣∣∣f ′(f i(x))− f ′(f i(y))

f ′(f i(y))
+ 1

∣∣∣∣
≤

n−1∑
i=0

log

(
|f ′(f i(x))− f ′(f i(y))|

|f ′(f i(y))|
+ 1

)

≤
n−1∑
i=0

|f ′(f i(x))− f ′(f i(y))|
|f ′(f i(y))|

using log(1 + x) < x

≤
n−1∑
i=0

∣∣∣∣f ′(f i(x))

f ′(f i(y))
− 1

∣∣∣∣ ≤ n∑
i=1

K|f i(x)− f i(y)|.

�

Lemma 6.5. Let f be a uniformly expanding full branch map. Then there exists a constant
K̃ depending only on C, λ, such that for all n ≥ 1, ω(n) ∈ Pn and x, y ∈ ω(n) we have

n∑
i=1

|f i(x)− f i(y)| ≤ K̃|fn(x)− fn(y)|.
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Proof. For simplicity, let ω̃ := (x, y) ⊂ ω(n). By definition the map fn|ω̃ : ω̃ → fn(ω̃) is
a diffeomorphism onto its image. In particular this is also true for each map fn−i|f i(ω̃) :
f i(ω̃)→ fn(ω̃). By the Mean Value Theorem we have that

|fn(x)− fn(y)| = |fn(ω̃)| = |fn−i(f i(ω̃)| = |(fn−i)′(ξn−i)||f i(ω̃)| ≥ Ceλ(n−i)|f i(ω̃)|

for some ξn−i ∈ fn−i(ω̃). Therefore

n∑
i=1

|f i(x)− f i(y)| =
n∑
i=1

|f i(ω̃)| ≤
n∑
i=1

1

C
e−λ(n−i)|fn(ω̃)| ≤ 1

C

∞∑
i=0

e−λi|fn(x)− fn(y)|.

�

6.3. The Gauss map. Before proving Theorems 7 and 8 we consider a specific example
to which these results apply. Let I = [0, 1] and define the Gauss map f : I → I by f(0) = 0
and

f(x) =
1

x
mod 1

if x 6= 0. Notice that for every n ∈ N the map

f :

(
1

n+ 1
,

1

n

]
→ (0, 1]

is a diffeomorphism. In particular the Gauss map is a full branch map though it is not
piecewise affine. Define the Gauss measure µG by defining, for every measurable set A

µG(A) =
1

log 2

∫
A

1

1 + x
dx.

Theorem 9. Let f : I → I be the Gauss map. Then µG is invariant and ergodic.

We prove this in a sequence of Lemmas. Invariance follows by direct verification.

Lemma 6.6. µG is invariant.

Proof. It is sufficient to prove invariance on intervals A = (a, b). In this case we have

µG(A) =
1

log 2

∫ b

a

1

1 + x
dx =

1

log 2
log

1 + b

1 + a

Each interval A = (a, b) has a countable infinite of pre-images, one inside each interval of
the form (1/n+1, 1/n) and this preimage is given explicitly as the interval (1/n+b, 1/n+a).



INTRODUCTION TO SMOOTH ERGODIC THEORY LECTURE NOTES 27

Therefore

µG(f−1(a, b)) = µG

(
∞⋃
n=1

(
1

n+ b
,

1

n+ a

))
=

1

log 2

∞∑
n=1

log

(
1 + 1

n+a

1 + 1
n+b

)

=
1

log 2
log

∞∏
n=1

(
n+ a+ 1

n+ a

n+ b

n+ b+ 1

)
=

1

log 2
log

(
1 + a+ 1

1 + a

1 + b

1 + b+ 1

2 + a+ 1

2 + a

2 + b

2 + b+ 1
. . .

)
=

1

log 2
log

1 + b

1 + a
= µG(a, b).

�

Lemma 6.7. The Gauss map is uniformly expanding

Proof. Exercise �

Lemma 6.8. Let f : I → I be the Gauss map. Then supω∈P supx,y∈ω |f ′′(x)|/|f ′(y)|2 ≤ 16.

Proof. Since f(x) = x−1 we have f ′(x) = −x−2 and f ′′(x) = 2x−3. Notice that both
first and second derivatives are monotone decreasing, i.e. take on larger values close to
0. Thus, for a generic interval ω = (1/(n + 1), 1/n) of the partition P we have |f ′′(x)| ≤
f ′′(1/(n + 1)) = 2(n + 1)3 and |f ′(y)| ≥ |f ′(1/n)| = n2. Therefore, for any x, y ∈ ω we
have |f ′′(x)|/|f ′(y)|2 ≤ 2(n+ 1)3/n4 ≤ 2((n+ 1)/n)3(1/n). This upper bound is monotone
decreasing with n and thus the worst case is n = 1 whch gives |f ′′(x)|/|f ′(y)|2 ≤ 16 as
required. �

We remark that Lebesgue measure is not generally invariant if f is not piecewise affine.
However the notion of ergodicity still holds and the ergodicity of Lebesgue measure implies
the ergodicity any other measure which is absolutely continuous. More generally, we have
the following.

Lemma 6.9. Let f : I → I be a measurable map and let µ1, µ2 be two probability measures
with µ1 � µ2. Suppose µ2 is ergodic for f . Then µ1 is also ergodic for f .

Proof. Suppose A ⊆ I with µ1(A) > 0. Then by the absolute continuity this implies
µ2(A) > 0; by ergodicity of µ2 this implies µ2(A) = 1 and therefore µ2(I \ A) = 0; and so
by absolute continuity, also µ1(I \ A) = 0 and so µ1(A) = 1. Thus µ1 is ergodic. �

Proof of Theorem 9. From Lemmas 6.7 and 6.8 we have that Lebesgue measure is ergodic
for the Gauss map f . Since the Gauss measure µG � m ergodicity of µG then follows from
Lemma 6.9. �

7. Physical measures for full branch maps

We have proved a general ergodicity result for Lebesgie measure for a relatively large class
of maps satisfying the bounded distortion property, but we only have two specific examples
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of such maps for which we actually have an absolutely continuous invariant measure. In
this section we prove that such a measure actually always exists.

Theorem 10. Let f : I → I be a full branch map satisfying (9). Then f admits a unique
ergodic absolutely continuous invariant probability measure µ. Morever, the density dµ/dm
of µ is Lipschitz continuous and bounded above and below.

3 We begin in exactly the same way as for the proof of the existence of invariant measures
for general continuous maps and define the sequence

µn =
1

n

n∑
i=0

f i∗m

where m denotes Lebesgue measure.

Exercise 7. For each n ≥ 1 we have µn � m. Hint: by definition f is a C2 diffeomorphism
on (the interior of) each element of the partition P and thus in particular it is non-singular
in the sense that m(A) = 0 implies m(f−1(A) = 0 for any measurable set A.

Since µn � m we can let

Hn :=
dµn
dm

denote the density of µn with respct to m. The proof of the Theorem then relies on the
following crucial

Proposition 7.1. There exists a constant K > 0 such that

(13) 0 < inf
n,x
Hn(x) ≤ sup

n,x
Hn(x) ≤ K

and for every n ≥ 1 and every x, y ∈ I we have

(14) |Hn(x)−Hn(y)| ≤ K|Hn(x)|d(x, y) ≤ K2d(x, y).

3

7.1. Absolutely continuous invariant ergodic probability measures. A natural approach to the
general study of the existence (or not) of physical measures is to study the conditions which imply that
a system has at least one physical measure. Related to this approach is the question of which kind of
measures can be physical measures. The easiest example of a physical measure µ is when µ is f -invariant,
ergodic and µ� m. Then, by the definition of absolute continuity we have µ(Bµ) = 1 implies m(Bµ) > 0.
Therefore the fact that µ is physical follows in this case directly from Birkhoff’s ergodic theorem. In this
case, the question of the existence of physical measures therefore reduces to the following question

Question 1. Does f admit an absolutely continuous, invariant, ergodic probability µ?

For simplicity we shall often refer to such a measure µ as an acip. This will also be the main question
we address in these notes. We mention however that singular measures can also be physical measures. For
example, suppose p is a fixed point which is attracting in the sense that it has a neighbourhood U such
that fn(x) → p for all x ∈ U . Then, the measure µ = δp is ergodic and invariant but Birkhoff’s ergodic
theorem alone does not imply that it is a physical measure. On the other hand, it is easy to check directly
that for all x ∈ U , the time averages also converge to the space average for all continuous functions ϕ and
so δp is indeed a physical measure.
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Proof of Theorem assuming Proposition 7.1. The Proposition says that the family {Hn}
is bounded and equicontinuous and therefore, by Ascoli-Arzela Theorem there exists a
subsequence Hnj converging uniformly to a function H satisfying (13) and (14). We define
the measure µ by defining, for every measurable set A,

µ(A) :=

∫
A

Hdm.

Then µ is absolutely continuous with respect to Lebesgue by definition, its density is
Lipschitz continuous and bounded above and below, and it is ergodic by the ergodicity of
Lebesgue measure and the absolute continuity. It just remains to prove that it is invariant.
Notice first of all that for any measurable set A we have

µ(A) =

∫
A

Hdm =

∫
A

lim
nj→∞

Hnjdm = lim
nj→∞

∫
A

Hnjdm

= lim
nj→∞

µnj(A) = lim
nj→∞

1

n

n−1∑
i=0

f i∗m(A) = lim
nj→∞

1

nj

nj−1∑
i=0

m(f−i(A))

For the third equality we have used the dominated convergence theorem to allow us to pull
the limit outside the integral. From this we can then write

µ(f−1(A)) = lim
nj→∞

1

nj

nj−1∑
i=0

m(f−i(f−1(A))

= lim
nj→∞

1

nj

nj∑
i=1

m(f−i(A)

= lim
nj→∞

(
1

nj

nj−1∑
i=0

m(f−i(A) +
1

nj
f−nj(A)− 1

nj
m(A)

)

= lim
nj→∞

1

nj

nj−1∑
i=0

m(f−i(A)

= µ(A).

This shows that µ is invariant and completes the proof. �

Remark 5. The fact that µn � m for every n does not imply that µ � m. Indeed,
consider the following example. Suppose f : [0, 1] → [0, 1] is given by f(x) = x/2. We
alreeady know that in this case the only physical measure is the Dirac measure at the
unique attracting fixed point at 0. In this simple setting we can see directly that µn → δ0

where µn are the averages defined above. In fact we shall show that stronger statement
that fn∗m→ δp as n→∞. Indeed, let µ0 = m. And consider the measure µ1 = f∗m which
is give by definition by µ1(A) = µ0(f−1(A)). Then it is easy to see that µ1([0, 1/2]) =
µ0(f−1([0.1/2])) = µ0([0, 1]) = 1. Thus the measure µ1 is completely concentrated on the
interval [0, 1/2]. Similarly, it is easy to see that µn([0, 1/2n]) = µ0([0, 1]) = 1 and thus the
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measure µn is completely concetrated on the interval [0.1/2n]. Thus the measures µn are
concentrated on increasingly smaller neighbourhood of the origin 0. This clearly implies
that they are converging in the weak star topology to the Dirac measure at 0.

This counter-example shows that a sequence of absolutely continuous measures does not
necessarily converge to an absolutely continuous measures. This is essentially related to the
fact that a sequence of L1 functions (the densities of the absolutely continuous measures
µn) may not converge to an L1 function even if they are all uniformly bounded in the L1

norm.

It just remains to prove Proposition 7.1. We start by finding an explicit formula for the
functions Hn.

Lemma 7.1. For every n ≥ 1 and every x ∈ I we have

Hn(x) =
1

n

n−1∑
i=1

Sn(x) where Sn(x) :=
∑

y=f−i(x)

1

|Dfn(y)|
.

Proof. It is sufficient to show that Sn is the density of the measure fn∗m with respect to m,
i.e. that fn∗m(A) =

∫
A
Sndm. By the definition of full branch map, each point has exactly

one preimage in each element of P . Since f : ω → I is a diffeomorphism, by standard
calculus we have

m(A) =

∫
f−n(A)∩ω

|Dfn|dm and m(f−n(A) ∩ ω) =

∫
A

1

|Dfn(f−n(x) ∩ ω)|
dm.

Therefore

fn∗m(A) = m(f−n(A)) =
∑
ω∈Pn

m(f−n(A) ∩ ω) =
∑
ω∈Pn

∫
A

1

|Dfn(f−n(x) ∩ ω)|
dm

=

∫
A

∑
ω∈Pn

1

|Dfn(f−n(x) ∩ ω)|
dm =

∫
A

∑
y∈f−n(x)

1

|Dfn(y)|
dm =

∫
A

Sndm.

�

Lemma 7.2. There exists a constant K > 0 such that

0 < inf
n,x
Sn(x) ≤ sup

n,x
Sn(x) ≤ K

and for every n ≥ 1 and every x, y ∈ I we have

|Sn(x) = Sn(y)| ≤ K|Sn(x)|d(x, y) ≤ K2d(x, y).

Proof. The proof uses in a fundamental way the bounded distortion property (9). Recall
that for each ω ∈ Pn the map fn : ω → I is a diffeomorphism with uniformly bounded
distortion. This means that |Dfn(x)/Dfn(y)| ≤ D for any x, y ∈ ω and for any ω ∈ Pn
(uniformly in n). Informally this says that the derivative Dfn is essentially the same
at all points of each ω ∈ Pn (although it can be wildly different in principle between
different ω’s). By the Mean Value Theorem, for each ω ∈ Pn, there exists a ξ ∈ ω such
that |I| = |Dfn(ξ)||ω| and therefore |Dfn(ξ)| = 1/|ω| (assuming the length of the entire
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interval I is normalized to 1). But since the derivative at every point of ω is comparable
to that at ξ we have in particular |Dfn(y)| ≈ 1/|ω| and therefore

Sn(x) =
∑

y∈f−n(x)

1

|Dfn(y)|
≈
∑
ω∈Pn

|ω| ≤ K.

To prove the uniform Lipschitz continuity recall that the bounded distortion property (9)
gives ∣∣∣∣Dfn(x)

Dfn(y)

∣∣∣∣ ≤ eKd(fn(x),fn(y) ≤ 1 + K̃d(fn(x), fn(y)).

Inverting x, y we also have∣∣∣∣Dfn(y)

Dfn(x)

∣∣∣∣ ≥ 1

1 + K̃d(fn(x), fn(y))
≥ 1− ˜̃Kd(fn(x), fn(y)).

Combining these two bounds we get∣∣∣∣Dfn(x)

Dfn(y)
− 1

∣∣∣∣ ≤ K̂d(fn(x), fn(y))}.

where K̂ = max{K̃, ˜̃K} For x, y ∈ I we have

|Sn(x)− Sn(y)| =

∣∣∣∣∣∣
∑

x̃∈f−n(x)

1

|Dfn(x̃)|
−

∑
ỹ∈f−n(y)

1

|Dfn(ỹ)|

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

1

|Dfn(x̃i)|
−
∞∑
i=1

1

|Dfn(ỹi)|

∣∣∣∣∣ where fn(x̃i) = x, fn(ỹi) = y

≤
∞∑
i=1

∣∣∣∣ 1

|Dfn(x̃)|
− 1

|Dfn(ỹ)|

∣∣∣∣ =
∞∑
i=1

1

|Dfn(x̃i)|

∣∣∣∣1− Dfn(x̃i)

Dfn(ỹi)

∣∣∣∣
≤ K̂

∞∑
i=1

1

|Dfn(x̃i)|
d(fn(x̃i), f

n(ỹi)) ≤ K̂

∞∑
i=1

1

|Dfn(x̃i)|
d(x, y) = K̂Sn(x)d(x, y).

�

Proof of Proposition 7.1. This Lemma clearly implies the Proposition since

|Hn(x)−Hn(y)| = | 1
n

∑
Si(x)− 1

n

∑
Si(y)| ≤ 1

n

∑
|Si(x)− Si(y)|

≤ 1

n

∑
KSi(x)d(x, y) = HnKd(x, y) ≤ K2d(x, y).

�
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8. Invariant measures via conjugacy

Now that we have a general theorem for the existence of physical measures for full branch
maps with bounded distortion, we can use these results to obtain physical measures for
maps which are not full branch or do not satisfy the bounded distortion conditions. We will
describe two techniques to achieve this. The first one is to relate two dynamical systems
via the notion of conjugacy.

Definition 10. Let X, Y be two metric spaces and f : X → X and g : Y → Y be two
maps. We say that f and g are conjugate if there exists a bijection h : X → Y such that
h ◦ f = g ◦ h. or, equivalently, f = h−1 ◦ g ◦ h.

A conjugacy h maps orbits of f to orbits of g.

Exercise 8. Show that if f, g are conjugate, then fn(x) = h−1 ◦ gn ◦ h(x) for every n ≥ 1.

In particular a conjugacy naps fixed points to fixed points and periodic points to cor-
responding periodic points. However, without additional assumptions on the regularity of
h it may not preserve additional structure. We that f, g are (Borel) measurably conjugate
if h, h−1 are (Borel) measurable, topologically conjugate if h is a homeomorphism, and Cr

conjugate, r ≥ 1, if h is a Cr diffeomorphism.

Exercise 9. Show that conjugacy defines an equivalence relation on the space of all dy-
namical systems. Show that measurable, topological, and Cr conjugacy, each defines an
equivalence relation on the space of dynamical systems.

Measurable conjugacies map sigma-algebras to sigma-algebras and therefore we can de-
fine a map

h∗ :M(X)→M(Y )

from the spaceM(X) of all probability measures on X to the spaceM(Y ) of all probabi-
ulity measures on Y , by

h∗µ(A) = µ(h−1(A)).

Lemma 8.1. Suppose f, g are measurably conjugate. Then

(1) h∗µ is invariant under g if and only if µ is invariant under f .
(2) h∗µ is ergodic for g if and only if µ is ergodic for f .

Proof. Exercise. (Hint: Indeed, for any measurable set A ⊆ Y we have µY (g−1(A)) =
µX(h−1(g−1(A))) = µX((h−1◦g−1)(A)) = µX((g◦h)−1(A)) = µX((h◦f)−1(A)) = µX(f−1(h−1(A))) =
µX(h−1(A) = µY (A). ). For ergodicity, let A ⊂ Y satisfy g−1(A) = A. Then, it’s preimage
by the conjugacy satisfies the same property, i.e. f−1(h−1(A)) = h−1(A). Thus, by the
ergodicity of µ we have either µ(h−1(A)) = 0 or µ(h−1(A)) = 1. �

We can therefore find invariant measure for a dynamical systems if we have information
about invariant measures for conjugate systems. We will give two applications of this
strategy.
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8.1. The Ulam-von Neumann map. Define the Ulam-von Neumann map f : [−2, 2]→
[−2, 2] by

f(x) = x2 − 2.

Proposition 8.1. The measure µ defined by

µ(A) =
2

π

∫
A

1√
4− x2

dm

is invariant and ergodic for f .

The invariance of µ can in principle be checked directly by computing explicity preimages
of intervals, as for the Gauss map. The ergodicity however is non-trivial. We use the pull-
back strategy to get both at the same time, and also to explain how the measure µ is
computed in the first place.

Consider the piecewise affine tent map T : [0, 1]→ [0, 1] defined by

T (z) =

{
2z, 0 ≤ z < 1

2

2− 2z, 1
2
≤ z ≤ 1.

Lemma 8.2. The map h : [0, 1]→ [−2, 2] defined by

h(z) = 2 cos πz.

is a conjugacy between f and T .

Proof. Notice that h is a bijection and both h and h−1 are smooth in the interior of their
domains of definition. Moreover, if y = h(z) = 2 cos πz, then z = h−1(y) = π−1 cos−1(y/2).
Therefore

h−1(f(h(x))) =
1

π
cos−1

(
f(h(x))

2

)
=

1

π
cos−1

(
(2 cosπx)2 − 2

2

)
=

1

π
cos−1(2 cos2 πx− 1) =

1

π
cos−1(cos 2πx) = T (x).

For the last equality, notice that for x ∈ [0, 1/2] we have 2πx ∈ [0, π] and so π−1 cos−1(cos 2πx) =
2x. On the other hand, for x ∈ [1/2, 1] we have 2πx ∈ [π, 2π] and so cos−1(cos 2πx) =
− cos−1(cos(2πx−2π)) = − cos−1(cos 2π(x−1)) = −2π(x−1) and therefore π−1 cos−1(cos 2πx) =
−2(x− 1) = −2x− 2. �

Thus, any ergodic invariant measure for T can be “pulled back” to an ergodic invariant
measure for f using the conjugacy h.

Proof of Proposition 8.1. We will show that µ = h∗m which implies immediately that it is
ergodic and invariant since Lebegue measure m is ergodic and invariant for T . Using the
explicit form of h−1 and differentiating, we have

(h−1)′(x) =
1

π

−1√
1− x2

4

=
2

π

−1√
4− x2
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and therefore, for aninterval A = (a, b) we have, using the fundamental theorem of calculus,

h∗m(A) = m(h−1(A) =

∫ b

a

|(h−1)′(x)|dx =
2

π

∫ b

a

1√
4− x2

dx.

�

8.2. Uncountably many non-atomic ergodic measures. We now use the pull-back
method to show construct an uncountable family of ergodic invariant measures. We recall
that a measure is called non-atomic if there is no individual point which has positive
measure.

Proposition 8.2. The interval map f(x) = 2x mod 1 admits an uncountable family of
non-atomic, mutually singular, ergodic measures.

We shall construct these measures quite explicitly and thus obtain some additional in-
formation about their properties. the method of construction is of intrinsic interest. For
each p ∈ (0, 1) let I(p) = [0, 1) and define the map fp : I(p) → I(p) by

fp =

{
1
p
x for 0 ≤ x < p
1

1−px−
p

1−p for p ≤ x < 1.

Lemma 8.3. For any p ∈ (0, 1) the maps f and fp are topologically conjugate.

Proof. This is a standard proof in topological dynamics and we just give a sketch of the
argument here because the actual way in which the conjugacy h is constructed plays a
crucial role in what follows. We use the symbolic dynamics of the maps f and fp. Let

I
(p)
0 = [0, p) and I

(p)
1 = (p, 1].

Then, for each x we define the symbol sequence (x
(p)
0 x

(p)
1 x

(p)
2 . . .) ∈ Σ+

2 by letting

x
(p)
i =

{
0 if f i(x) ∈ I(p)

0

1 if f i(x) ∈ I(p)
1 .

This sequence is well defined for all points which are not preimages of the point p. Moreover
it is unique since every interval [x, y] is expanded at least by a factor 1/p at each iterations
and therefore fn([x, y]) grows exponentially fast so that eventually the images of fn(x) and
fn(y) must lie on opposite sides of p and therefore give rise to different sequences. The
map f : I → I is of course just a special case of fp : I(p) → I(p) with p = 1/2. We can
therefore define a bijection

hp : I(p) → I

which maps points with the same associated symbolic sequence to each other and points
which are preimages of p to corresponding preimages of 1/2.

Exercise 10. Show that hp is a conjugacy between f and fp.
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Exercise 11. Show that hp is a homeomorphism. Hint: if x does not lie in the pre-image
of the discontinuity (1/2 or p depending on which map we consider) then sufficiently close
points y will have a symbolic sequence which coincides with that of x for a large number of
terms, where the number of terms can be made arbitrarily large by choosing y sufficiently
close to x. The corresponding points therefore also have symbolic sequences which coincide
for a large number of terms and this implies that they must be close to each other.

From the previous two exercises it follows that h is a topological conjugacy. �

Since hp : I(p) → I is a topological conjugacy, it is also in particular measurable conju-
gacy and so, letting m denote Lebesgue measure, we define the measure

µp = h∗m.

By Proposition 5.1 Lebesgue measure is ergodic and invariant for fp and so it follows from
Lemma 8.1 that µp is ergodic and invariant for f .

Exercise 12. Show that µp is non-atomic.

Thus it just remains to show that the µp are mutually singular.

Lemma 8.4. The measures in the family {µp}p∈(0,1) are all mutually singular.

Proof. The proof is a straightforward, if somewhat subtle, application of Birkhoff’s Ergodic
Theorem. Let

Ap = {x ∈ I whose symbolic coding contain asymptotically a proportion p of 0’s}
and

A(p)
p = {x ∈ I(p) whose symbolic coding contain asymptotically a proportion p of 0’s}

Notice that by the way the coding has been defined the asymptotic propertion of 0’s in
the symbolic coding of a point x is exactly the asymptotic relative frequency of visits of

the orbit of the point x to the interval I0 or I
(p)
0 under the maps f and fp respectively.

Since Lebesgue measure is invariant and ergodic for fp, Birkhoff implies that the relative

frequence of visits of Lebesgue almost every point to I
(p)
0 is asymptotically equal to the

Lebesgue measure of I
(p)
0 which is exactly p. Thus we have that

m(A(p)
p ) = 1.

Moreover, since the conjugacy preserves the symbolic coding we have

Ap = h(A(p)
p ).

Thus, by the definition of the pushforward measure

µp(Ap) = m(h−1(Ap)) = m(h−1(h(A(p)
p )) = m(A(p)

p ) = 1.

Since the sets Ap are clearly pairwaise disjoint for distinct values of p it follows that the
measures µp are mutually singular.

�



36 STEFANO LUZZATTO

Remark 6. This example shows that the conjugacies in question, even though they are
homeomorphisms, are singular with respect to Lebesgue measure, i.e. thay maps sets of
full measure to sets of zero measure.

9. Invariant measures via inducing

It is not always easy or even possible to conjugate an unnkown dynamical system to a
known one and thus the method of pull-back described in the previous section has limited
applicability. We describe here another method which, on the other hand, turns out to be
quite generally applicable. This is based on the general notion of inducing.

Definition 11. Let f : X → X be a map, ∆ ⊆ X and τ : ∆ → N a function such that
f τ(x)(x) ∈ ∆ for all x ∈ ∆. Define a map F : ∆→ ∆ by

F (x) := f τ(x)(x).

The map F is called the induced map of f for the return time function τ .

If ∆ = X then any function τ can be used to define an induced map, on the other hand,
if ∆ is a proper subset of X then the requirement f τ(x)(x) ∈ ∆ is a non-trivial restriction.
The map F : ∆ → ∆ can be considered as a dynamical system in its own right and
therefore has its own dynamical properties which might be, at least a priori, completely
different from those of the original map f . However it turns out that there is a close relation
between certain dynamical properties of F , in particular invariant measures, and dynamical
properties of the original map f , and we analyze this relationship below. We recall that a
map f : X → X is non-singular with respect to a measure µ if it maps positive measure
sets to positive measure sets: µ(A) > 0 implies µ(f(A)) > 0 or, equivalently, m(A) = 0
implies m(f−1(A)) = 0.

Theorem 11. Let f : X → X be a map and F := f τ : ∆→ ∆ the induced map on some
subset ∆ ⊆ X corresponding to the return time function τ : ∆→ N. Let µ̂ be a probability
measure on ∆ and suppose that τ̂ :=

∫
τdµ̂ <∞. Then

µ :=
1

τ̂

∞∑
n=1

n−1∑
i=0

f i∗(µ̂|∆n)

is a probability measure on X. Moreover,

(1) If µ̂ is invariant for F then µ is invariant for f .
(2) If µ̂ is ergodic for F then µ is ergodic for f .

Suppose additionally that there exists a reference measure m on X and that f is non-
singular with respect to m. Then

(3) If µ̂� m then µ� m.

As an immediate consequence we have the following

Corollary 9.1. Suppose f : X → X is non-singular with respect to Lebesgue measure
and there exists a subset ∆ ⊆ X and an induced map F : ∆ → ∆ which admits an
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invariant, ergodic, absolutely continuous probability measure µ̂ for which the return time τ
is integrable, then f admits an invariant ergodic absolutely continuous probability measure.

Remark 7. Notice that Theorem 11 and its Corollary are quite general and in particular
apply to maps in arbitrary dimension.

Proof of Theorem 11. For convenience, we introduce the notation

∆n := {x ∈ ∆ : τ(x) = n}.

By the measurability of τ each ∆n is a measurable set. To prove that µ is a probability
measure observe first of all that for a measurable set B ⊆ X, we have f i∗(µ̂|∆n)(B) =
µ̂|∆n(f−i(B)) = µ̂(f−i(B) ∩∆n) and therefore

µ(B) :=
1

τ̂

∞∑
n=1

n−1∑
i=0

f i∗(µ̂|∆n)(B) =
1

τ̂

∞∑
n=1

n−1∑
i=0

µ̂(f−i(B) ∩∆n).

This shows that µ is a well defined measure and also shows the way the measure is con-
structed by ”spreading” the measure µ̂ around using the dynamics. To see that µ is a
probability measure we write

µ(X) =
1

τ̂

∞∑
n=1

n−1∑
i=0

µ̂(f−i(X) ∩∆n) =
1

τ̂

∞∑
n=1

n−1∑
i=0

µ̂(∆n) =
1

τ̂

∞∑
n=1

nµ̂(∆n) =
1

τ̂

∫
τdµ̂ = 1

To prove (1), suppose that µ̂ is F -invariant, and therefore µ̂(B) = µ̂(F−1(B)) for any
measurable set B. We will show first that

(15)
∞∑
n=1

µ̂(B ∩∆n) =
∞∑
n=1

µ̂(f−n(B) ∩∆n))

Since the sets ∆n are disjoint and their union is ∆, the sum on the right hand side is
exactly µ̂(B). So we just need to show that the sum on the right hand side is µ̂(F−1(B)).
By the definition of F we have

F−1(B) = {x ∈ ∆ : F (x) ∈ B} =
∞⋃
n=1

{x ∈ ∆n : fn(x) ∈ B} =
∞⋃
n=1

(f−n(B) ∩∆n).

Since the ∆n are disjoint, for any measure µ̂ we have

µ̂(F−1(B)) = µ̂(
∞⋃
n=1

(f−n(B) ∩∆n)) =
∞∑
n=1

µ̂(f−n(B) ∩∆n)).
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This proves (15) and therefore implies

µ(f−1(B)) =
∞∑
n=1

n−1∑
i=0

µ̂(f−i(f−1(B)) ∩∆n)

=
∞∑
n=1

µ̂(f−1(B) ∩∆n) + µ̂(f−2(B) ∩∆n) + · · ·+ µ̂(f−n(B) ∩∆n)

=
∞∑
n=1

n−1∑
i=1

µ̂(f−i(B) ∩∆n) +
∞∑
n=1

µ̂(f−n(B) ∩∆n)

=
∞∑
n=1

n−1∑
i=1

µ̂(f−i(B) ∩∆n) +
∞∑
n=1

µ̂(B ∩∆n)

=
∞∑
n=1

n−1∑
i=0

µ̂(f−i(B) ∩∆n)

= µ(B).

This shows that µ is invariant and thus completes the proof of (1). To prove (2), assume
that µ̂ is ergodic. Now let B ⊆ X satisfy f−1(B) = B and µ(B) > 0. We will show that

µ(B) = 1 thus implying that µ is ergodic. Let B̂ = B ∩∆. We first show that

(16) F−1(B̂) = B̂ and µ̂(B̂) = 1.

Indeed, f−1(B) = B implies f−n(B̂) = f−n(B) ∩ f−n(∆) = B ∩ f−n(∆) and therefore

F−1(B̂) =
∞⋃
n=1

(f−n(B̂) ∩∆n) =
∞⋃
n=1

(B ∩ f−n(∆) ∩∆n) =
∞⋃
n=1

(B ∩∆n) = B ∩∆ = B̂

where the third equality follows from the fact that ∆n := {x : τ(x) = n} ⊆ {x : fn(x) ∈
∆} = f−n(∆). Now, from the definition of µ we have that f−1(B) = B and µ(B) > 0 imply

µ̂(B ∩∆n) = µ̂(f−i(B)∩∆n) > 0 for some n > i ≥ 0 and therefore µ̂(B̂) = µ̂(B ∩∆) > 0.

Thus, by the ergodicity of µ̂, we have that µ̂(B ∩ ∆) = µ̂(B̂) = 1 and this proves (16),
and thus in particular, letting Bc := X \ B denote the complement of B, we have that
µ̂(Bc ∩∆) = 0 and therefore

µ(Bc) :=
∞∑
n=1

n−1∑
i=0

µ̂(f−i(Bc) ∩∆n) =
∞∑
n=1

n−1∑
i=0

µ̂(Bc ∩∆n) = 0

This implies that µ(B) = 1 and thus completes the proof of (2). Finally (3) follows directly
from the definition of µ. �

9.1. Physical measure for intermittency maps. We give a relatively simple but non-
trivial application of the method of inducing. Let γ ≥ 00 and consider the map fγ : [0, 1]→
[0, 1] given by

fγ(x) = x+ x1+γ mod 1.
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For γ > 0 this can be thought of as a perturbation of the map f(x) = 2x mod 1 (for γ = 0)
(though it is a C0 perturbation and not a C1 perturbation). It is a full branch map, but
it fails to satisfy both the uniform expansivity and the bounded distortion condition since

f ′γ(x) = 1 + (1 + γ)xγ

and so in particular for the fixed point at the origin we have f ′(0) = 1 and thus (fn)′(0) = 1
for all n ≥ 1. Nevertheless we will still be able to prove the following:

Theorem 12. For any γ ∈ [0, 1) the map fγ admits a unique ergodic absolutely continuous
invariant probability measure.

We first construct the full branch induced map, then show that it satisfies the uniform
expansivity and distortion conditions and finally check the integrability of the return times.
Let x1 := 1, let x2 denote the point in the interior of [0, 1] at the boundary between the
two domains on which f is smooth, and let {xn}∞n=3 denote the branch of pre images of
x2 converging to the fixed point at the origin, so that we have xn → 0 monotonically and
and f(xn+1) = xn. For each n ≥ 1 we let ∆n = (xn+1, xn]. Then, the intervals ∆n form a
partition of ∆ := (0, 1] and there is a natural induced map F : ∆→ ∆ given by F |∆n = fn

such that F : ∆n → ∆ is a C1 diffeomorphism.

Lemma 9.1. F is uniformly expanding.

Proof. Exercise. �

It remains to show therefore that F has bounded distortion and that the inducing times
are integrable. For both of these results we need some estimates on the size of the partition
elements ∆n. To simplify the exposition, we shall use the following notation. Given two
sequences {an} and {bn} we use the notation an ≈ bn to mean that there exists a constant
C such that C−1bn ≤ an ≤ Cbn for all n and an . bn to mean that an ≤ Cbn for all n.

Lemma 9.2. xn ≈ 1/n
1
γ and |∆n| ≈ 1/n

1
γ

+1.

Proof. First of all notice that since xn = f(xn+1) = xn+1 + x1+γ
n+1 we have

|∆n| = |xn − xn+1| = x1+γ
n+1

Also, the ratio between xn and xn+1 is bounded since

xn/xn+1 = (xn+1 + x1+γ
n+1)/xn+1 = 1 + xγn+1 → 1

as n→∞. So in fact, up to a uniform constant independent of n we have

(17) |∆n| ≈ x1+γ
(n) for any x(n) ∈ ∆n.

Now consider the sequence yk = 1/k1/γ and let Jk = [yk+1, yk]. Then, considering the

function g(x) = 1/x1/γ we have g′(x) ≈ 1/γx
1
γ

+1 and a straightforward application of the
Mean Value Theorem gives

|Jk| = |yk − yk+1| =
∣∣∣∣ 1

kγ
− 1

(k + 1)γ

∣∣∣∣ = |g(k)− g(k + 1)| ≈ 1

k
1
γ

+1
=

(
1

k
1
γ

)1+γ

= y1+γ
k
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Similarly as above we have

yk/yk+1 = ((k + 1)/k)1+γ → 1

as k →∞, and therefore, up to a constant independent of k we have

(18) |Jk| ≈ y1+γ
(k) for any y(k) ∈ Jk

Combining (17) and (18) we see that if ∆n ∩ Jk 6= ∅ then |∆n| ≈ |Jk|. This means that
there is a uniform bound on the number of intervals that can overlap each other which

means that the sequences xn, yn have the same asymptotics and so xn ≈ yn = 1/n
1
γ and in

particular |∆n| ≈ x1+γ
n = 1/n

1
γ

+1. �

9.2. Distortion estimates.

Lemma 9.3. There exists a constant D > 0 such that for all n ≥ 1 and all x, y ∈ ∆n∣∣∣∣log
Dfn(x)

Dfn(y)

∣∣∣∣ ≤ D|fn(x)− fn(y)|.

Proof. We start with the standard inequality∣∣∣∣log
Dfk(x)

Dfk(y)

∣∣∣∣ ≤ k−1∑
i=0

| logDf(f i(x))− logDf(f i(y))| ≤
k−1∑
i=0

D2f(ξi)

Df(ξi)
|f i(x)− f i(y)|

for some ξi ∈ (f i(x), f i(y)), where we have used here the Mean Value Theorem and the
fact that D(logDf) = D2f/Df . Since x, y ∈ ∆n then xi, yi ∈ ∆n−i and so, by the previous
Lemma we have

|f i(x)− f i(y)| ≤ |∆n−i| ≤ 1/(n− i)
1
γ

+1.

Moreover, by the definition of f we have

Df(x) = 1 + (1 + γ)xγ and D2f(x) = γ(1 + γ)xγ−1

and therefore, from the fact that ξi ∈ ∆n−i we have

ξi ≈
1

(n− i)
1
γ

, Df(ξi) ≈ 1 +
1

n− i
, D2f(ξi) ≈

1

(n− i)1− 1
γ

we get ∣∣∣∣log
Dfk(x)

Dfk(y)

∣∣∣∣ ≤ k−1∑
i=0

D2f(ξi)

Df(ξi)
|f i(x)− f i(y)| .

k−1∑
i=1

(n− i)
1
γ
−1

(n− i)
1
γ

+1
≤

∞∑
i=1

1

i2
.

This gives a uniform bound for the distortion but not yet in terms of the distance as
required in the Lemma. For this we now take advantage of the distortion bound just
obtained to get

|x− y|
|∆n|

≈ |f
i(x)− f i(y)|
|∆n−i|

≈ |f
n(x)− fn(y)|
|∆|

to get in particular
|f i(x)− f i(y)| ≈ |∆n−i||fn(x)− fn(y)|.
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Repeating the calculation above with this new estimate we get∣∣∣∣log
Dfk(x)

Dfk(y)

∣∣∣∣ ≤ k−1∑
i=0

D2f(ξi)

Df(ξi)
|∆n−i||fn(x)− fn(y)| . |fn(x)− fn(y)|

�

Lemmas 9.1 and 9.3 imply that the map F : ∆ → ∆ has a unique ergodic absolutely
continuous invariant probability measure µ̂. To get the corresponding measure for µ it only
remains to show that

∫
τdµ̂ < ∞. We also know however that the density dµ̂/dm of µ̂

with respect to Lebesgue measure µ is Lipschitz and in particular bounded, and therefore
it is sufficient to show that

∫
τdm <∞.

Lemma 9.4. For γ ∈ (0, 1), the induced map F has integrable inducing times. Moreover,
for every n ≥ 1 we have

m({x : τ(x) ≥ n}) =
∞∑
j=n

m(∆n) .
1

n
1
γ

Proof. From the estimates obtained above we have that |∆n| ≈ n−( 1
γ

+1). Therefore∫
τdx .

∑
n

n|∆n| ≈
∑
n

1

n
1
γ

.

The sum on the right converges whenever γ ∈ (0, 1) and this gives the integrability. The
estimate for the tail follows by standard methods such as the following

∞∑
j=n

|∆n| .
∞∑
j=n

1

n
1
γ

+1
≤
∫ ∞
n−1

1

x
1
γ

+1
dx ≈

[
1

x
1
γ

]∞
n−1

=
1

(n− 1)
1
γ

≈ 1

n
1
γ

.

�

Inducing is a very powerful method for constructing invariant ergodic probability mea-
sures which are absolutely continuous with respect to Lebesgue measure. In this applica-
tion above we constructed a uniformly expanding full branch induced map with bounded
distortion since we have proved that such maps have ergodic acip’s.

Theorem 13 (Rychlik). Let F : [0, 1] → [0, 1] be a piecewise C1 on a countable partition
P and suppose that ∑

ω∈P

var

(
1ω

F ′

)
<∞.

Then F admits a unique ergodic absolutely continuous invariant measure µ with density of
bounded variation.

It may be easier in some cases to induce to a Rychlik map than to a full branch map.
On the other hand, even though it may be difficult to construct explicitly in certain situ-
ations, it turns out that the existence of a uniformly expanding full branch induced map
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with bounded distortion is quite general and indeed almost a necessary condition for the
existence of ergodic invariant absolutely continuous invariant measures.

Definition 12. Let M be a Riemannian manifold. We say that an invariant probability
measure µ is expanding if all its Lyapunov exponents are positive, i.e. for µ-almost every
x and every v ∈ TxM \ {0},

(19) λ(x, v) := lim sup
n→∞

1

n
log ‖Dfn(x)v‖ > 0.

We say that µ is regularly expanding if it is expanding and in addition we have

(20) log ‖Df−1‖ ∈ L1(µ).

Theorem 14 (Alves, Dias, Luzzatto, 2010). Let f : M → M be a C2 map with a non-
degenerate critical set. Then f admits a uniformly expanding full branch induced map with
bounded distortion if and only if it admits an ergodic regularly expanding acip.

10. Mixing and Decay of Correlations

Ergodicity is only the beginning of the story in terms of the statistical properties of
dynamical systems. The asymptotic statistical distribution given by Birkhoff’s ergodic
theorem provides some information about the dynamic, but does not distinguish, for ex-
ample, between such quite different dynamical systems as an irrational circle rotation and
a piecewise affine uniformly expanding map, both of which admit Lebesgue measure as an
invariant ergodic measure.

Definition 13. For measurable functions ϕ, ψ : M → R we define the correlation function

Cn(ϕ, ψ) =

∣∣∣∣∫ ψ(ϕ ◦ fn)dµ−
∫
ψdµ

∫
ϕdµ

∣∣∣∣
We say that the correlation function Cn(ϕ, ψ) decays if Cn(ϕ, ψ)→ 0 as n→∞. In the

special case in which ϕ, ψ are characteristic functions of sets A,B we can write

Cn(1A, 1B) =

∣∣∣∣∫ 1A(1B ◦ fn)dµ−
∫
1Adµ

∫
1Bdµ

∣∣∣∣
=

∣∣∣∣∫ 1A∩f−n(B)dµ−
∫
1Adµ

∫
1Bdµ

∣∣∣∣
= |µ(A ∩ f−n(B))− µ(A)µ(B)|.

Definition 14. We say that an invariant probability measure µ is mixing if

Cn(1A, 1B) = |µ(A ∩ f−n(B))− µ(A)µ(B)| → 0

as n→∞, for all measurable sets A,B ⊆M .

Mixing has some natural geometrical and probabilistic interpretations. Indeed, dividing
through by µ(B) we get ∣∣∣∣µ(A ∩ f−n(B))

µ(B)
− µ(A)

∣∣∣∣→ 0
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as n → ∞, for all measurable sets A,B ⊆ M , with µ(B) 6= 0. Geometrically, one can
think of f−n(B) as a “redistribution of mass” and the mixing condition says that for
large n the proportion of f−n(B) which intersects A is just proportional to the measure
of A. In other words f−n(B) is spreading itself uniformly with respect to the measure µ.
A more probabilistic point of view is to think of µ(A ∩ f−n(B))/µ(B) as the conditional
probability of having x ∈ A given that fn(x) ∈ B. The mixing condition then says that this
probability converges to the probability of A, i.e., asymptotically, there is no causal relation
between the two events. This is why we say that a mixing system exhibits stochastic-like
or random-like behaviour.

Example 7. It is easy to verify that an irrational circle rotation is not mixing. On the other
hand, the map 2x mod 1 is mixing, though this is not completely trivial to verify.

A natural question is on the rate of decay of the correlations function. In general this
will depend on the functions ϕ, ψ.

Definition 15. Given classes B1,B2 of functions and a sequence {γn} of positive numbers
with γn → 0 as n→∞ we say that the correlation function Cn(ϕ, ψ) decays for functions
ϕ ∈ B1, ψ ∈ B2 at the rate given by the sequence {γn} if, for any ϕ, ψ ∈ B there exists a
constant C = C(ϕ, ψ) > 0 such that

Cn(ϕ, ψ) ≤ Cγn

for all n ≥ 1.

For example, if γn = eγn we say that the correlation decays exponentially, if γn = n−γ
we say that the correlation decays polhynomially. The key point here is that the rate, i.e.
the sequence {γn} is not allowed to depend on the functions but only on the function class.
Thus the rate of decays becomes in some sense an intrinsic property of the system. It is not
always possible to obtain decay at any specific rate if the class of observables is too large.
For example, if we choose B1 = B2 = L1 or any other space of functions that includes
characteristic functions, then given any rate, it is possible to find subsets A,B such that
the correlation function Cn(1A, 1B) of the corresponding characteristic functions decays at
a slower rate. It is however possible to prove that many piecewise uniformly expanding
one-dimensional maps exhibit exponential decay of correlations for relatively large spaces of
functions such as Hölder continuous functions or functions of bounded variation. About a
decade ago, L.-S. Young, showed that the method of inducing can be used also to study the
decay of correlations of maps which may not be uniformly expanding but which admit good
induced maps. More precisely, suppose that Suppose that f : M →M admits an induced
uniformly expanding full branch map F = f τ : ∆ → ∆ satisfying the bounded distortion
property. We have see above that F admits a unique ergodic acip µ̂ with bounded density.
If the return times are Lebesgue integrable

∫
τdm < ∞ then there exists an ergodic acip

µ for f . The rate of decay of correlation of µ is captured by the rate of decay of the tail
of the return time function. More precisely, let

∆̂n := {x ∈ ∆ : τ(x) ≥ n}.
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Theorem 15. The rate of decay of correlation with respect to µ for Hölder continuous
functions is determined by the rate of decay of |∆̂n|: if |∆̂n| → 0 exponentially, then the

rate of decay is exponential, if |∆̂n| → 0 polynomially, then the rate of decay is polynomial.

These general results indicate that the rate of decay of correlations is linked to what is
in effect the geometrical structure of f as reflected in the tail of the return times for the
induced map F . From a technical point of view they shift the problem of the statistical
properties of f to the problem of the geometrical structure of f and thus to the (still highly
non-trivial) problem of showing that f admits an induced Markov map and of estimating
the tail of the return times of this map. The construction of an induced map in certain
examples is relatively straightforward and essentially canonical but the most interesting
constructions require statistical arguments to even show that such a map exists and to
estimate the tail of the return times. In these cases the construction is not canonical
and it is usually not completely clear to what extent the estimates might depend on the
construction.

11. Abundance of maps with absolutely continuous invariant probability
measures

We have seen that, at least in theory, the method of inducing is a very powerful method
for constructing invariant measures and studying their statistical properties. The question
of course is whether the method is really applicable and more generally if there are many
maps with acip’s. Let C2(I) denote the family of C2 maps of the interval. We say that c ∈ I
is a critical point if f ′(c) = 0. In principle, critical points constitute a main obstruction to
the construction and estimates we have carried out above, since they provide the biggest
possible contraction. If a critical point is periodic of period k, then c is a fixed point
for fk and (fk)′(c) = 0 and so c is an attracting periodic orbit. On the other hand we
have already seen that maps with critical points can have acid’s as in the case of the map
f(x) = x2 − 2 which is smoothly conjugate to a piecewise affine ”tent map”. This map
belongs to the very well studied quadratic family

fa(x) = x2 + a.

It turns out that any interesting dynamics in this family only happens for a bounded
interval

Ω = [−2, a∗]

of parameter values. For this parameter interval we define

Ω+ := {a ∈ Ω : fa admits an ergodic acip µ}
and

Ω− := {a ∈ Ω : fa admits an attracting periodic orbit}.
Over the last 20 years or so, there have been some quite remarkable results on the structure
of these sets. First of all, if a ∈ Ω+ then µ is the unique physical measure and m(Bµ) = 1,
i.e. the time average of Lebesgue almost every x for a function ϕ converge to

∫
ϕdµ. On

the other hand, if a ∈ Ω− then the Dirac measure δO+(p) on the attracting periodic orbit
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is the unique physical measure and m(BδO+(p)
) = 1, Lebesgue almost every x converges to

the orbit of p. Thus in particular we have

Ω+ ∩ Ω− = ∅.
Moreover, we also have the following results:

Theorem 16. (1) Lebesgue almost every a ∈ Ω belongs to either Ω+ or Ω−;
(2) Ω− is open and dense in Ω;
(3) m(Ω+) > 0.

The last of these statements is actually the one that was proved first, by Jakabson in
1981. He used precisely the method of inducing to show that there are a positive Lebesgue
measure set of parameters for which there exists a full branch induced map with exponential
tails (and this exponential decay of correlations).

Appendix A. Additional Remarks

A.1. Singular physical measures and hyperbolicity. A much more sophisticated ver-
sion of this argument can be applied in the case that Λ ⊂ M is a certain kind of chaotic
attractor such that m(Λ) = 0 but such that the topological basin of attraction of Λ has
positive measure. Then any ergodic invariant probability measure is necessarily supported
on Λ and therefore is singular with respect to Lebesgue and so once again Birkhoff’s ergodic
theorem cannot be used to prove that µ is a physical measure. The question therefore is
whether the points in the basin which are topologically attracted to Λ are also “proba-
bilistically attracted” to µ, in the sense that, as they get closer and closer to Λ, their time
averages converge to those of points in Λ. This can be shown to be the case if Λ satisfies
some hyperbolicity conditions, which imply the existence of a foliation of stable manifolds.
This implies that points in the topological basin are not justgenerically attracted to the
attractor Λ but are actually attracted to the orbit of a specific point on the attractor, and
thus their asymptotic time averages will be the same as those of the point on the attractor
which they are attracted to. This strategy has actually been implemented successfully for
the most famous chaotic attractor of all, the Lorenz attarctor, given by a relatively simple
system of ODE’s The Lorenz equations were introduced by the metereologist E. Lorenz in
1963, as an extremely simplified model of the Navier-Stokes equations for fluid flow.

ẋ1 = 10(x2 − x1)

ẋ2 = 28x1 − x2 − x1x3

ẋ3 = x1x2 − 8x3/3.

This is a very good example of a relatively simple ODE which is quite intractable from
many angles. It does not admit any explicit analytic solutions; the topology is extremely
complicated with infinitely many periodic solutions which are knotted in many different
ways (there are studies from the point of view of knot theory of the structure of the periodic
solutions in the Lorenz equations); numerical integration has very limited use since nearby
solutions diverge very quickly. Lorenz noticed that the dynamics of the Lorenz equations
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is chaotic in that it exhibits sensitive dependence on initial conditions, nearby solutions
diverge exponentially fast and seem to have completely independent futures. This makes
it extremely difficult to follow a specific solution with any real accuracy for any reasonably
long time. However we have the following

Theorem 17 (1963-2000, combinations of several results by different people). The Lorenz
equations admit a physical measure µ whose basin Bµ has full measure.

This remark implies in particular that the asymptotic probability distribution is deter-
mined by µ and is therefore independent of x for every x ∈ Bµ. This contrast with the
sensitive dependence on initial conditions but does not contradict it. The sensistive de-
pendence on initial conditions says that two initial conditions diverge from each other and
therefore are hard to follow, but this says that nevertheless, thei asymptotic distribution
is the same.

Appendix B. Lack of convergence of probabilistic limits

The probabilistic ω-limit set of course related to the topological ω-limit set, but there
are some important and non-trivial subtleties. Notice first of all that it tracks the amount
of time that the orbit spends in different regions of the space, so that if the proportion of
points of the orbit in a certain region of space is positive but tends to zero, then the limit
measures will not give positive measure to that region. We give two examples.

Example 8. Suppose f : M → M is a continuous map, p is a fixed point, and fn(x) → p
as n→∞. Then it is easy to verify that ω(x) = {p} and ωprob(x) = {δp}, which is exactly
what we expect.

Example 9. On the other hand, consider a situation with a heteroclinic cycle connecting two
fixed points, a very common situation both in continuous time and discrete time systems.
Suppose that f has two hyperbolic fixed points pA, pB whose separatrices connect the two
points defining a closed topological disk as in the following picture.

Suppose that area enclosed by the fixed points pA, pB and the separatrices contains a
fixed point P which is repelling and that all trajectories spiral away from P and accumulate
on the boundary of the disk. Under suitable conditions on the eigenvalues of the points pA
and pB the situation is the following. Suppose we have a point inside the domain bounded
by this cycle whose orbit spirals outwards towards the cycle. Then it is quite easy to
verify that the topological ω-limit set is just the entire cycle. There are on the other hand
various possibilities for the probabilistic ω-limit set, depending on the specific values of the
eigenvalues of the linearizations at the fixed points. It is fairly easy to see that the orbit
will spend much longer time near the fixed points, since the orbit is very slow near the fixed
points and so spends a large amount of time there, but takes only a fixed bounded number
of iterations to get from one fixed point to the other. However there are two crucially
different possible situations:

(1) ωprob(x) = {µ} where µ is some convex combination ηδp1 + (1− η)δp2 of the Dirac-δ
measures in the fixed points for some η ∈ [0, 1].
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(2) ωprob(x) = {δx1 , δx2} so that the sequence µn does not converge but has both Dirac-δ
measures as limit points.

These two cases look quite similar but they are dramatically different. The first case says
that the sequence µn does actually converge and that the orbit asymptotically spends a
certain proportion of time near p1 and a certain proportion near p2. On the other hand,
the second case says that the sequence µn does not converge and has both Dirac-δ measures
as limits. This means, that there is some subsequence nj → ∞ such that µnj → δp1 and
another subsequence nk →∞ such that µnk → δp2 . But this means that if we look at the
finite piece of orbit up to time nj, most points along the orbit, e.g. 99% of points, will be
close to δp1 . On the other hand if we look at finite pieces of orbit up to some time nk then
most points along the orbit, e.g. 99% of points, will be close to δp2 . So the “probability”
of being close to p1 or to p2 depends on the size of the piece of initial trajectory. It is
relatively easy to show that this situation can indeed occur, by choosing the eigenvalues of
the linearization at the fixed points appropriately. This situation means that the averages
do not converge ! This would be like tossing a coin and having for example that if you toss
is ten times you are more likely to get heads, if you toss it one hundered times, you are
more likely to get tails, if you toss it one thousand times you are more likely to get heads,
etc.
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