
GEOMETRIC FLOWS IN COMPLEX GEOMETRY

JEFFREY STREETS

Abstract. These are notes for lectures delivered at the Hefei Advanced School on PDEs
in Geometry and Physics June30th-July 11th 2014.

1. Preliminaries

These are notes for the Hefei Advanced School on PDEs in Geometry and Physics, June
30th-July 11th 2014. We assume familiarity with (almost) complex manifolds, vector
bundles, connections, curvature, torsion and characteristic classes. Many good sources
exist for obtaining familiarity with this material, one example is [51]. The purpose of
these lectures is to motivate and develop the theory of geometric evolution equations in
the context of almost-Hermitian geometry, and the material is based on the following
papers, listed in chronological order:

(1) Streets, J.; Tian, G. Hermitian curvature flow, arXiv:0804.4109
(2) Streets, J.; Tian, G. A parabolic flow of pluriclosed metrics arXiv:0903.4418
(3) Streets, J.; Tian, G. Regularity results for pluriclosed flow arXiv:1008.2794
(4) Streets, J.; Tian, G. Symplectic curvature flow arXiv:1012.2104
(5) Streets, J.; Tian, G. Generalized Kähler geometry and the pluriclosed flow arXiv:1109.0503
(6) Streets, J. Generalized geometry, T-duality and renormalization group flow arXiv:1310.5121
(7) Streets, J. Pluriclosed flow on generalized Kähler manifolds with split tangent bun-

dle arXiv:1405.0727

Our discussion will be largely expository, focusing on guiding philosophy, broad themes,
conjectures, and open problems. We will discuss some proofs, but will mostly refer the
reader to the original papers for complete proofs. The six lectures will be divided as
follows:

(1) Overview of Kähler geometry/Kähler Ricci flow
(2) Introduction to pluriclosed flow
(3) Pluriclosed flow as a gradient flow
(4) Pluriclosed flow and generalized Kähler geometry
(5) T-duality and geometric flows
(6) Symplectic curvature flow

2. Review of Kähler-Ricci flow

2.1. Uniformization Theorem. The classification of Riemann surfaces is closely related
to the classical uniformization theorem

Theorem 2.1. (Uniformization of Riemann Surfaces) Every simply connected Riemann
surface is conformally equivalent to either the open unit disc, the complex plane, or the
Riemann sphere.
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Using this, a classification of compact Riemann surfaces follows. In particular, since any
covering space of a Riemann surface is again a Riemann surface, lifting to the universal
cover and applying the theorem above yields

Theorem 2.2. Every compact, connected Riemann surface is a quotient by a free, properly
discontinuous action of a group on the unit disc, the complex plane, or the Riemann
sphere. In particular, it admits a Riemannian metric of constant (scalar) curvature.

Remark 2.3. It is possible to prove the theorem above using Ricci flow. In particular,
fix a Riemann surface (M2, g, J) with compatible metric. We can ask the (apparently)
slightly different question: does there exist a conformally related metric e2ug which has
constant curvature? The Ricci flow attempts to construct such a metric using a parabolic
equation:

∂

∂t
g = − 2 Rc .

Since the dimension n = 2, the Ricci tensor can be expressed as Rc = 1
2
Rg, and then

the flow reduces to a flow on the conformal factor alone. The work of many authors []
leads to the statement that, after volume normalization, the solution exists for all time
and converges to a constant scalar curvature metric. This is then a new proof of the
uniformization theorem.

A fundamental question which drives much research in complex geometry is:

Can we use geometric flows to prove geometric/topological clas-
sification theorems for complex manifolds in higher dimensions?

Our inspiration and guiding philosophy for answering this question comes from the Kähler-
Ricci flow, which we now briefly recall.

2.2. Kähler-Ricci flow.

Definition 2.4. Let (M2n, J) be a compact complex manifold. A Riemannian metric g
on M is Kähler if

(1) g is compatible with J , i.e.: g(J ·, J ·) = g(·, ·)
(2) Setting ω(·, ·) = g(J ·, ·), we have that dω = 0.

Remark 2.5. In the above definition, ω ∈ Λ1,1
R and [ω] ∈ H1,1

R is called the Kähler class.

Lemma 2.6. (∂∂-Lemma) Let (M2n, g, J) be a compact Kähler manifold. Suppose g′ is
another metric on M such that [ω′] = [ω]. Then there exists a unque f ∈ C∞(M) such
that

∫
M
fdVg = 0 and

ω = ω′ +
√
−1∂∂f.

Definition 2.7. Given (M2n, J, g) a Kähler manifold, we let Rm denote the curvature
tensor of the Levi-Civita connection, which coincides with the Chern connection on T 1,0.
Moreover, we say that

ρij = glkRijkl



GEOMETRIC FLOWS IN COMPLEX GEOMETRY 3

is the Ricci form of g. It follows from easy curvature calculations that ρ ∈ Λ1,1
R and

moreover dρ = 0 by the Bianchi identity. Alternatively, ρ is the curvature of the induced
connection on the determinant line bundle Λn,0, and it then follows that [ρ] = c1(M,J),
the first Chern class of (M,J).

Definition 2.8. Let (M2n, J, ω0) be a compact Kähler manifold. We say that a one-
parameter family of Kähler metrics ωt is a solution to Kähler-Ricci flow with initial con-
dition ω0 if

∂ω

∂t
= − ρ(ωt),

ω(0) = ω0.

Remark 2.9. In general for a Kähler metric one has the identity Rc(J ·, ·) = ρ(·, ·), and
therefore given a solution to Kähler-Ricci flow the associated Riemannian metrics satisfy
the Ricci flow equation:

∂g

∂t
= − Rc .

Given that solutions to the Ricci flow are unique, it follows that Ricci flow preserves the
Kähler condition.

2.3. Tian-Zhang’s sharp local existence theorem.

Definition 2.10. Let (M2n, J) be a compact Kähler manifold. Let

K = {[φ] ∈ H1,1
R | ∃ω ∈ [φ], ω > 0}.

Remark 2.11. The set K is an open cone in the finite dimensional vector space H1,1
R .

Now let (M4, ωt, J) be a solution to Kähler-Ricci flow. Observe that there is an asso-
ciated ODE

∂

∂t
[ω] = −c1.

Certainly, if the boundary of K is reached along this ODE, the flow must have generated
a singularity of some kind. One can ask the natural question: is this the ONLY way that
KRF encounters singularities? The answer is yes:

Theorem 2.12. (Tian-Zhang) Let (M2n, ω0, J) be a compact Kähler manifold. Let

T = sup{t ∈ R|[ω0]− tc1 ∈ K}.
Then the solution to Kähler-Ricci flow exists smoothly on [0, T ), and this solution is
maximal.

3. Introduction to pluriclosed flow

The Kähler-Ricci flow is certainly an equation of central importance in Kähler geometry.
One could easily fill several courses discussing it alone. However, our purpose in this course
is to tell the story of new equations which aim to extend the applicability of the techniques
and ideas os Kähler-Ricci flow into the world of complex, non-Kähler manifolds. To begin
let us recall the first known example of such a manifold, the Hopf surface, which plays a
central role in our discussion.
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Example 3.1. Consider C2 − (0, 0). Fix complex numbers α, β, |α| ≥ |β| > 1, and let

Γ = 〈γ〉 , γ(z1, z2) = (αz1, βz2).

The action of Γ is free and properly discontinuous, therefore we may construct the smooth
manifold

Mα,β :=
C2 − (0, 0)

Γ
.

As it turns out, Mα,β
∼= S3×S1. Moreover, since Γ acts by biholomorphisms, this manifold

inherits a complex structure. However, since H2(M,R) ∼= 0, it follows that M cannot
admit a Kähler metric. In the case |α| = |β|, this manifold inherits a metric relevant to
us later, specifically consider on C2 − (0, 0),

ω =

√
−1

µ2
∂∂µ2,

where µ =
√
|z1|2 + |z2|2. This metric is certainly invariant under the action of Γ, and so

descends to the quotient.

3.1. Integrability conditions for Hermitian metrics, Gauduchon’s Theorem.

Remark 3.2. As we discussed earlier, every Riemann surface is in fact a Kähler manifold,
and in fact every Hermitian metric on a Riemann surface is Kähler. This will no longer
be the case in higher dimensions. As inevitably one has dω 6= 0, there are various natural
conditions which can be placed on Hermitian, non-Kähler metrics. As it turns out, in
complex dimension n = 2, there is really only one integrability condition for non-Kähler
metrics.

Definition 3.3. Let (M2n, g, J) be a Hermitian manifold with Kähler form ω. The metric
is said to be

(1) Balanced if dωn−1 = 0
(2) Gauduchon, or standard if ∂∂ωn−1 = 0.
(3) pluriclosed, or strong Kähler with torsion, if ∂∂ω = 0.

Remark 3.4. These do not represent all possible “integrability conditions” for Hermitian
metrics. However, observe that, trivially, when n = 2 a metric is Kähler if and only if it is
balanced and is pluriclosed if and only if it is Gauduchon. In this case these do represent
the only natural (i.e. diffeomorphism invariant) conditions one can place on a Hermitian
metric.

Question 3.5. Is there a natural geometric flow that preserves the “balanced” condition?
As we will see, the fact that the pluriclosed condition is linear makes it possible to make
an educated guess at a natural flow. In the case of the balanced condition, which is
nonlinear, it is less clear.

Theorem 3.6. (Gauduchon, [9]) Given (M2n, g, J) a connected compact Hermitian man-
ifold, there exists a unique φ ∈ C∞(M) such that g̃ = φg is a Gauduchon metric and∫
M
φdVg = 1.
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3.2. Pluriclosed Flow. We now ask a more refined version of the question from the
introduction: is it possible to prove classification results in higher dimensions for complex
(non-Kähler) manifolds using geometric evolution equations? The rest of the course is
devoted to making progress on this difficult question. Our philosophy will be guided by
some basic principles. In particular, we hope that our flows:

• Preserve (almost) Hermitianness
• Preserve as much additional structure as possible ((almost)-Kähler, pluriclosed,

etc.)
• Have “canonical” fixed points
• Are as close to Ricci flow as possible.

Given the previous discussion, it is natural to ask if there is a geometric flow preserving
the pluriclosed condition. One way to guess the answer is by finding the “local generality”
of pluriclosed metrics. To begin we first recall the “local generality” of Kähler metrics.

Lemma 3.7. Let U ⊂ Cn be an open subset homeomorphic to a ball, and suppose ω ∈ Λ1,1
R

is a Kähler form on U . There exists f ∈ C∞(U) such that ω =
√
−1∂∂f .

Proof. Since U has trivial cohomologies, since ω is a real closed (1, 1) form there exists
α ∈ Λ1

R(M) such that dα = ω. Decomposing α = α0,1 + α1,0, we observe that ∂α0,1 = 0,
and so there exists f ∈ C∞(M,C) such that

α0,1 = ∂f.

But since α0,1 = α1,0 we conclude that α1,0 = ∂f . Plugging in this yields

ω = dα

= ∂α0,1 + ∂α1,0

= ∂∂f + ∂∂f

= ∂∂
(
f − f

)
=
√
−1∂∂2=f.

�

Remark 3.8. It is because of this simple fact that one expects Kähler-Ricci flow to only
“depend on one function,” which is borne out by computations. Indeed, our original
formula for ρ shows that it only depends on the volume form of the metric, which is
locally given by a single function.

Lemma 3.9. Let U ⊂ Cn be an open subset homeomorphic to a ball, and suppose ω ∈ Λ1,1
R

is a pluriclosed form on U . There exists α ∈ Λ0,1 such that

ω = ∂α + ∂α.

Proof. Since the form ∂ω is d-closed, so by the local ∂∂ lemma we obtain β ∈ Λ0,1 such
that

∂ω = ∂∂β
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Now consider the form

γ := ω − ∂β − ∂β.
Note that

∂γ = ∂ω − ∂∂β = 0, ∂γ = ∂ω − ∂∂β = 0

Since γ ∈ Λ1,1
R is d-closed, it follows again by the ∂∂-lemma that there exists f ∈ C∞(M,R)

such that γ =
√
−1∂∂f . Finally, set

α = β +

√
−1

2
∂f.

We then directly compute

∂α + ∂α = ∂β + ∂β +
√
−1∂∂f = ∂β + ∂β + γ = ω.

�

Remark 3.10. With this point of view, it is natural to define a flow of pluriclosed metrics
using a second order closed (1, 1)-form and a first-order (0, 1)-form. Since we want our flow
to reduce to Kähler-Ricci flow, it is natural to let the closed form be the Chern curvature
form. For the first order (0, 1)-form, only one option really presents itself, which is ∂∗ωω.

Definition 3.11. Let (M2n, J) be a compact complex manifold. A one-parameter family
of Kähler forms ωt is a solution to pluriclosed flow if

∂

∂t
ω = ∂∂∗ωω + ∂∂

∗
ωω +

√
−1

2
∂∂ log det g.

Proposition 3.12. Let (M2n, J) be a complex manifold, and let P denote the space of
Hermitian metrics on M . Given ω ∈ P, the operator

Φ : P → Λ1,1

Φ(ω) := − ∂∂∗ωω − ∂∂
∗
ωω −

√
−1

2
∂∂ log det g

is strictly elliptic.

Proof. First we require a coordinate formula for ∂∗ωω. An exercise shows that

(∂∗ωω)j =

√
−1

2
gqp
[
gpj,q − gpq,j

]
.

Taking conjugates we have

(∂
∗
ωω)i =

√
−1

2
gqp [gpq,i − giq,p]

It follows that

(∂∂∗ωω)ij =

√
−1

2
gqp
[
gpj,qi − gpq,ji

]
+ l.o.t

(∂∂∗ωω)ij =

√
−1

2
gqp
[
giq,pj − gpq,ij

]
+ l.o.t
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We have already determined a formula for the remaining term,(√
−1

2
∂∂ log det g

)
ij

=

√
−1

2
gqpgpq,ij + l.o.t

It follows that

Φ(ω) =

√
−1

2
gqp
[
gpj,qi + giq,pj − gpq,ij

]
=

√
−1

2
gqpgij,pq,

where the last line follows from applying the pluriclosed condition

0 = (∂∂ω)ijkl = gkl,ij − gkj,il − gil,kj + gij,kl.

�

Theorem 3.13. Let (M2n, ω0, J) be a compact manifold with a pluriclosed metric. There
exists ε > 0 and a unique solution ωt to pluriclosed flow on [0, ε) with initial condition ω0.
Moreover, if ω0 is Kähler, then ωt is a solution to Kähler-Ricci flow.

Question 3.14. A basic question is: can we classify the fixed points of this flow? There
is a complete answer in dimension n = 2 provided by priori work of Gauduchon-Ivanov.

Theorem 3.15. Let (M4, g, J) be a solution of Φ(ω) = λω. Then either (M4, J) is
Kähler-Einstein, or it is locally isometric to R × S3 with the standard product metric.
The universal cover of (M,J) is biholomorphic to C2 \ {(0, 0)}, and M admits a finite

sheeted cover M̃ with fundamental group Z, specifically

π1(M̃) ∼= Z = 〈(z1, z2)→ (αz1, βz2)〉(3.1)

where α, β ∈ C, 1 < |α| = |β|.
Question 3.16. Are there “soliton solutions” on the Hopf surfaces with |α| 6= |β|? More
generally, what is the long time behavior of the pluriclosed flow on these surfaces?

3.3. The formal existence time of pluriclosed flow.

3.3.1. The positive cone.

Definition 3.17. Let (M2n, J) be a complex manifold. Let

H1,1

∂+∂
:=

{
ψ ∈ Λ1,1

R |∂∂ψ = 0
}{

∂α + ∂α|α ∈ Λ0,1
}

This is referred to as the (1, 1)-Aeppli cohomology, defined in []. It was shown in [] that
this space is always finite dimensional on a compact manifold. Next, in analogy with the
Kähler cone, we next define the cone of classes in H1,1

∂+∂
which admit pluriclosed metrics.

Definition 3.18. Let (M2n, J) be a complex manifold. Let

P :=
{

[ψ] ∈ H1,1

∂+∂
| ∃ ω ∈ [ψ], ω > 0

}
.

The space P is an open cone in H1,1

∂+∂
, which is nonempty if and only if M admits

pluriclosed metrics. We refer to P as the positive cone.



8 JEFFREY STREETS

3.3.2. The formal existence time. Observe that, if ωt is a solution to pluriclosed flow, then
[ωt] defines a path in P . Moreover, since H1,1

R ⊂ H1,1

∂+∂
, we can interpret the first Chern

class of (M,J) as an element of H1,1

∂+∂
. With this point of view we can solve the ODE

[ωt] = [ω0]− tc1.

Certainly the flow cannot exist smoothly if the boundary of P is reached along this ODE.
We state this for emphasis.

Lemma 3.19. Let (M2n, J) be a compact complex manifold, and suppose ω0 is a pluri-
closed metric on M . Let

τ ∗ := sup{t|[ω0]− tc1 ∈ P}.

If T denotes the maximal existence time of the solution to pluriclosed flow with initial
condition ω0, then T ≤ τ ∗.

The main guiding conjecture behind our study of pluriclosed flow is that in fact reaching
the boundary of the cone is the only way to have a singularity.

Conjecture 3.20. Weak existence conjecture: Let (M2n, g0, J) be a compact complex
manifold with pluriclosed metric. Let

τ ∗ := sup
t≥0
{t|[ω0 − tc1] ∈ P∂+∂}.

Then the solution to pluriclosed flow with initial condition g0 exists on [0, τ ∗).

3.3.3. Characterization of τ ∗. In this subsection we exhibit some cases where the formal
existence time τ ∗ can be computed explicitly. First, in [49] the authors gave a charac-
terization of P in the case of non-Kähler surfaces, which we record here for convenience.
First, recall the Bott-Chern cohomology

H1,1
BC =

{Ker d : Λ1,1
R → Λ3

R}
i∂∂Λ0

R
.

Also, define the spaces

B1,1
R = d{Λ1

R} ∩ Λ1,1
R ,

H1,1
R =

{Ker d : Λ1,1
R → Λ3

R}
B1,1

R
.

Lemma 3.21. If b1(M) is odd, the space

Γ =
B1,1

R

i∂∂Λ0
R

is one dimensional, and is identified with R via the L2 inner product with ω.

Proof. Let µ ∈ B1,1
R such that ∫

M

µ ∧ ω = 0.
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This implies that trω µ is L2 orthogonal to the constant functions. So in particular it is in
the image of trω ∂∂. Fix f ∈ C∞ such that trω ∂∂f = trω µ. It follows that µ−

√
−1∂∂f

is exact, but also anti-self-dual. Thus it is harmonic and exact, and hence vanishes. �

Let γ0 denote a positive generator of Γ. Since the space of pluriclosed metrics on M is
connected, this orientation of Γ is well-defined.

Theorem 3.22. (Buchdahl) Let M be a compact complex surface with ω a Gauduchon
metric. Let ρ ∈ Λ1,1 satisfy ∂∂ρ = 0,

∫
M
ρ ∧ ρ,

∫
D
ρ > 0 for all effective divisors ρ, and∫

M
ρ ∧ ω > 0. Then there is u ∈ C∞(M) such that ρ+

√
−1∂∂u > 0.

Theorem 3.23. ([49] Theorem 5.6) Let (M4, J) be a complex non-Kähler surface. Sup-
pose φ ∈ Λ1,1 is pluriclosed. Then [φ] ∈ P∂+∂ if and only if

•
∫
M
φ ∧ γ0 > 0

•
∫
D
φ > 0 for every effective divisor with negative self intersection.

Proof. One can show that φ+Aγ0 satisfies the hypotheses of the Buchdahl theorem above
for sufficiently large A. �

4. Pluriclosed flow as a gradient flow

4.1. Ricci flow as a gradient flow.

Remark 4.1. We have by now suggested a conjecture for the long time existence behavior
of the pluriclosed flow, and moreover classified the fixed points of the flow on complex
surfaces. Now we can ask the question, “is it reasonable to expect the pluriclosed flow to
converge?” For heat-type equations, such convergence usually comes from the fact that
one has a gradient flow. Before beginning our discussion of pluriclosed flow as a gradient
flow, we recall Perelman’s construction showing that Ricci flow is a gradient flow.

Definition 4.2. Let Mn be a compact manifold, and let g denote a Riemannian metric
and f ∈ C∞(M). Let

F(g, f) =

∫
M

[
R + |∇f |2

]
e−fdVg.

Furthermore, let

λ(g) := inf
{f |

∫
M e−fdV=1}

F(g, f).

This quantity λ is the first eigenvalue of the Schrodinger operator −4∆ +R.

Theorem 4.3. (Perelman) Ricci flow is the gradient flow of λ, suitably interpreted.

Remark 4.4. This monotonicity is exhibited by in some sense exhibiting infinite dimen-
sional families of monotone quantities. More precisely, one shows that one has monotonic-
ity of F for arbitrary test functions f evolving by the conjugate heat equation.

Lemma 4.5. Let (Mn, gt) be a solution to the Ricci flow on a compact manifold. Let
� = ∂

∂t
−∆gt be the time-evolving heat operator. The conjugate operator �∗ with respect

to the spacetime L2 metric is �∗ = − ∂
∂t
−∆ +R.
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Lemma 4.6. Let Mn be a compact manifold, and let gt, ft be one-parameter families of
metrics and functions. Then

∂

∂t
F(gt, ft) =

∫
M

[〈
−h,Rc +∇2f

〉
+ (

trg h

2
− φ)

(
2∆f − |∇f |2 +R

)]
e−fdV.

We now suppose that our parameter e−f evolves by the conjugate heat equation. This
is equivalent to

∂

∂t
f = −∆f + |∇f |2 −R.

Lemma 4.7. Suppose (Mn, gt, ft) is a solution to

∂

∂t
g = − 2(Rc +∇2f)

∂

∂t
f = −∆f −R.

Then
∂

∂t
F(gt, ft) = 2

∫
M

∣∣Rc +∇2f
∣∣2 e−fdV ≥ 0.

4.2. Pluriclosed flow as a gradient flow. In this section we exhibit that pluriclosed
flow is the gradient flow of the first eigenvalue of a certain Schrödinger operator associated
to the time-dependent metric. What we actually show is that, after pulling back a solution
to pluriclosed flow by the one-parameter family of diffeomorphisms generated by the vector
field dual to the Lee form, one produces a solution to the renormalization group flow of
a nonlinear sigma model arising in string theory (see [22] 108-112). This surprising fact
both exhibits a connection between pluriclosed flow and mathematical physics, and from
another point of view produces a large class of interesting examples of the renormalization
group flow.

Let us recall some notation. Fix (M2n, g, J) a complex manifold with pluriclosed metric.
Let∇ denote the Bismut connection, which is the unique Hermitian connection with skew-
symmetric torsion. Explicitly, this connection takes the form

∇ = ∇LC +
1

2
g−1H,

where

H = dcω = −dω(J, J, J).

Furthermore, let

θ = −Jd∗ω
be the Lee form of ω. A detailed curvature calculation leads to:

Proposition 4.8. Given (M2n, ω(t), J) a solution to pluriclosed flow, one has

∂

∂t
g =

[
−Rcg +

1

4

2n∑
i=1

g(H(X, ei), H(Y, ei))−
1

2
Lθ]g

]
,

∂

∂t
H =

1

2

[
∆LB,g(t)H − Lθ]H

]
,
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where θ] is the vector field dual to θ, taken with respect to the time varying metric.

Theorem 4.9. Let (M2n, ω̃(t), J) be a solution to pluriclosed flow. Let X(t) = 1
2
θ̃], where

] means the vector dual taken with respect to the time-varying metric, and let φt denote

the one parameter family of diffeomorphisms generated by X(t). Let H̃ denote the torsion

of the time-varying Bismut connections. Let (g(t), H(t)) = (φ∗(g̃)(t)), φ∗t (H̃)(t)). Then

∂

∂t
g = − Rcg +

1

4
H

∂

∂t
H =

1

2
∆LBH.

(4.1)

where Hij = gklgmnHikmHjln.

Proof. This follows from a standard calculation using Proposition 4.8. �

As noted above, the system of equations (4.1) arises naturally in physics as the renor-
malization group flow of a nonlinear sigma model. By extending Perelman’s energy func-
tional ([20]) to this coupled system, Oliynyk, Suneeta, and Woolgar showed that (4.1) is
the gradient flow of a nonlinear Schrödinger operator ([19]). To discuss this let us gener-
alize the notation slightly. As in the introduction, let (Mn, g) be a Riemannian manifold,
and let H denote a three-form on M . Let

F(g,H, f) =

∫
M

[
R− 1

12
|H|2 + |∇f |2

]
e−fdV.

Furthermore set

λ(g,H) = inf
{f |

∫
M e−fdV=1}

F(g,H, f).

Proposition 4.10. ([19] Proposition 3.1) The gradient flow of λ is

∂

∂t
g = − 2 Rc +

1

2
H− 2∇2f,

∂

∂t
H = ∆LBH − d(∇f H),

(4.2)

where f satisfies the conjugate heat equation

∂

∂t
f = −∆f −R +

1

4
|T |2 .(4.3)

Furthermore, in [7] Feldman, Ilmanen and Ni gave a generalization of Perelman’s steady
and shrinking entropies to an entropy modeled on expanding solitons. This expanding
entropy has an extension to (4.1), as shown by the first named author. Define

W+(g,H, u, σ) =

∫
M

[
σ

(
|∇u|2

u
+Ru− 1

12
|H|2 u

)
+ u log u

]
dV

=

∫
M

[
σ

(
|∇f+|2 +R− 1

12
|H|2

)
− f+ + n

]
udV
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where f+ is defined by

u =
e−f+

(4πσ)
n
2

.

Theorem 4.11. ([24] Theorem 6.2) Let (Mn, g(t), T (t)) be a solution to (4.1) on [t1, t2]
and suppose u(t) is the solution to (4.3). Let

v+ =

[
(t− t1)(2∆f+ − |∇f+|2 +R− 1

12
|H|2)− f+ + n

]
u.

Then(
∂

∂t
+ ∆−R +

1

4
|T |2

)
v+

= 2(t− t1)

(∣∣∣∣Rc−1

4
H +∇2f+ +

g

2t

∣∣∣∣2 +
1

4
|d∗H −∇f+ H|2

)
u+

1

6
|H|2 u.

Corollary 4.12. Let (Mn, g(t), H(t)) be a solution to (4.1) on [t1, t2] and suppose u(t) is
a solution to the conjugate heat equation. Then

∂

∂t
W+(g(t), H(t), u(t), t− τ1) =

∫
M

2u

[
(t− t1)

∣∣∣∣Rc−1

4
H +∇2f+ +

g

2(t− t1)

∣∣∣∣2
+

1

4
(t− t1) |d∗H −∇f+ H|2 +

1

12
|H|2

]
dV.

We can derive further corollaries from these results, akin to the “ruling out of breathers”
statements discovered by Perelman ([20]). First recall two definitions.

Definition 4.13. We say that a solution to (4.1) is a breather if there are times t1 < t2,
a constant α > 0 and a diffeomorphism φ such that αg(t1) = φ∗g(t2). The breather is
steady, shrinking or expanding if α = 1, α < 1, or α > 1, respectively.

Definition 4.14. We say that a solution to (4.1) is a gradient soliton if there is a function
f and a constant λ so that

0 = Rc−1

4
H +∇2f − λg

0 = ∆LBT − d(∇f T )

The soliton is steady, shrinking or expanding if λ = 0, λ > 0, or λ < 0, respectively.

Corollary 4.15. Any solution to (4.1) on a compact manifold which is a steady breather
is a steady gradient soliton. Any solution to (4.1) on a compact manifold which is an
expanding breather is an Einstein metric with H ≡ 0.

Proof. The first statement follows immediately from Proposition 4.10. For the second,
we note that Theorem 4.11 clearly implies that an expanding breather is an expanding
soliton, and moreover H ≡ 0. Thus g(t) is an expanding Ricci soliton, which are known
to be negative constant Einstein metrics, a result originally due to Hamilton ([12]). �



GEOMETRIC FLOWS IN COMPLEX GEOMETRY 13

5. Pluriclosed flow and generalized Kähler geometry

5.1. Introduction to generalized Kähler geometry.

Definition 5.1. A generalized Kähler manifold is a Riemannian manifold (M2n, g) to-
gether with two complex structures J+, J−, each compatible with g, further satisfying

dc+ω+ = −dc−ω− = H,

dH = 0.
(5.1)

This concept first arose in the work of Gates, Hull, and Roček [8], in their study of
N = (2, 2) supersymmetric sigma models. Later these structures were put into the rich
context of Hitchin’s generalized geometric structures [42] in the thesis of Gualtieri [39]
(see also [40]).

Theorem 5.2. Pluriclosed flow preserves generalized Kähler geometry, suitably inter-
preted.

Proof. Consider the Hermitian manifold (M2n, g, J+). By (5.1), this is a pluriclosed struc-
ture, i.e.

ddc+ω+ = 0.(5.2)

By ([48] Theorem 1.2), there exists a solution to pluriclosed flow with initial condition ω+

on [0, T ) for some maximal T ≤ ∞. Call this one-parameter family of Kähler forms ω+(t),
and define ω−(t) analogously as the solution to pluriclosed flow on the complex manifold
(M,J−) with initial condition ω−. Next consider the time-dependent vector fields

X± =
(
−J±d∗g±ω±

)]± ,(5.3)

and let φ±(t) denote the one-parameter family of diffeomorphisms of M generated by
X±, with φ±0 = Id. Theorem 1.2 in [49] implies that (φ+(t)∗g+(t), φ+(t)∗(dc+ω+(t)))
is a solution to (4.1) with initial condition (g, dc+ω+). Likewise, we have a solution
(φ−(t)∗g−(t), φ−(t)∗(dc−ω−(t))) to (4.1) with initial condition (g, dc−ω−). However, if we

let (g̃(t), H̃(t)) denote this latter solution, we observe that

∂

∂t
g̃ij = − 2R̃cij +

1

2
H̃ipqH̃

pq
j = −2R̃cij +

1

2

(
−H̃ipq

)(
−H̃ pq

j

)
∂

∂t

(
−H̃

)
= ∆d

(
−H̃

)
,

(5.4)

i.e. (g̃(t),−H̃(t)) is a solution to (4.1) with initial condition (g,−dc−ω−). By (5.1), we see
that (φ+(t)∗g+(t), φ+(t)∗(dc+ω+(t))) and (φ−(t)∗g−(t),−φ−(t)∗(dc−ω−(t))) are two solutions
of (4.1) with the same initial condition. Using the uniqueness of solutions of (4.1) ([47]
Proposition 3.3), we conclude that these two solutions coincide, and call the resulting
one-parameter family (g(t), H(t)).
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Next we want to identify the two complex structures with which g remains compatible.
We observe by that for arbitrary vector fields X, Y ,

g (φ±(t)∗J±X,φ±(t)∗JY ) = g
(
φ±(t)−1∗ · J± · φ±(t)∗X,φ±(t)−1∗ · J± · φ±(t)∗Y

)
=
[
φ±(t)−1,∗g

]
(J± · φ±(t)∗X, J± · φ±(t)∗Y )

= g± (J± · φ±(t)∗X, J± · φ±(t)∗Y )

= g± (φ±(t)∗X,φ±(t)∗Y )

= [φ±(t)∗g±] (X, Y )

= g(X, Y ).

(5.5)

Therefore g(t) is compatible with φ±(t)∗J±(t). Denote these two time dependent complex

structures by J̃±. It follows that ω̃± = φ±(t)∗ω±. Next we note by naturality of d that

d̃c±ω̃±(X, Y, Z) = − [dω̃±]
(
J̃±X, J̃±Y, J̃±Z

)
= − [dφ±(t)∗ω±]

(
φ±(t)−1∗ · J± · φ±(t)∗X, · · ·

)
= [φ±(t)∗ (−dω±)]

(
φ±(t)−1∗ · J± · φ±(t)∗X, · · ·

)
= − dω± (J± · φ±(t)∗X, · · · )
= dc±ω± (φ±(t)X, · · · )
= φ±(t)∗

(
dc±ω±

)
(X, Y, Z)

= ±H(X, Y, Z).

(5.6)

It follows that

d̃c+ω̃+ = − d̃c−ω̃− = H, dH = 0,(5.7)

showing that the triple (g(t), J̃+(t), J̃−(t)) is generalized Kähler for all time. �

Remark 5.3. This theorem points out an important point regarding (4.1). Based on
physical intuition, one hopes that the system (4.1) preserves generalized Kähler geometry.
Theorem 5.2 says that this is true, only if we allow the complex structures to flow as well.
We discovered this via the use of pluriclosed flow, but it is also interesting to express this
purely using (4.1), by augmenting it with a flow of complex structures.

Proposition 5.4. Let (M2n, g̃(t), J) be a solution to the pluriclosed flow. Let φt be the

one parameter family of diffeomorphisms generated by
(
−Jd∗g̃ω̃

)]
with φ0 = Id, and let

g(t) = φ∗t (g̃(t)), J(t) = φ∗t (J). Then

∂

∂t
J lk = (∆J)lk − [J, g−1 Rc]lk

− JpkD
sJ liDpJ

i
s − J liDsJpkDpJ

i
s + JpsD

sJ liDpJ
i
k + J liD

sJpsDpJ
i
k

− J lpDkJ
p
tD

sJ ts + JpkDpJ
l
tD

sJ ts − J
p
tD

sJ tsDpJ
l
k.

(5.8)

With this proposition in hand we can add an equation to the B-field flow system to yield
a new system of equations which preserves the generalized Kähler condition. Specifically,
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given a Riemannian manifold (Mn, g) and J ∈ End(TM), let

R(J)lk = [J, g−1 Rc]lk

Q(DJ)lk = − JpkD
sJ liDpJ

i
s − J liDsJpkDpJ

i
s + JpsD

sJ liDpJ
i
k + J liD

sJpsDpJ
i
k

− J lpDkJ
p
tD

sJ ts + JpkDpJ
l
tD

sJ ts − J
p
tD

sJ tsDpJ
l
k.

(5.9)

Now consider the system of equations for an a priori unrelated Riemannian metric g,
three-form H, and tangent bundle endomorphisms J±:

∂

∂t
gij = − 2 Rcij +

1

2
HipqH

pq
j

∂

∂t
H = ∆dH,

∂

∂t
J± = ∆J± +R(J±) +Q(DJ±).

(5.10)

Remark 5.5. Adapting Theorem 5.2, it is clear then that with the appropriate identifi-
cations, the system (5.10) preserves generalized Kähler structure.

6. T-duality and pluriclosed flow

In this section we present an interesting symmetry of the B-field RG flow encountered
above. We recall the basic setup here. Let (Mn, g) be a Riemannian manifold and let
H0 ∈ Λ3(T ∗M), dH0 = 0. Given this setup and b ∈ Λ2(M) we set H = H0 + db. The
B-field renormalization group flow is the system of equations

∂

∂t
gij = − 2 Rcij +

1

2
HipqH

pq
j ,

∂

∂t
b = − d∗gH.

(6.1)

For the sequel we require a gauge-fixed version of this flow. In particular, given the above
setup and a one-parameter family of functions ft, consider

∂

∂t
gij = − 2 Rcij +

1

2
HipqH

pq
j + (L∇fg)ij,

∂

∂t
b = − d∗gH + i∇f H.

(6.2)

6.1. Topological T-duality. In this section we recall some background on the topo-
logical aspect of T-duality. Our discussion here follows closely the work of Cavalcanti-
Gualtieri [35].

Definition 6.1. Let M , M be principal T k bundles over a common base manifold B,
and let H ∈ Ω3

Tk(M) and H ∈ Ω3
Tk(M) be invariant closed forms, and finally let θ and θ

denote connection 1-forms on M and M . Consider M ×B M the fiber product of M and
M , with projection maps p : M ×B M → M, p : M ×B M → M . We say that (M,H, θ)
and (M,H, θ) are topologically T -dual if

p∗H − p∗H = d(p∗θ ∧ p∗θ).(6.3)
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Remark 6.2. While as written this definition requires specific choices of H and H, the
definition only depends on the cohomology classes [H] and [H]. Specifically, if (M,H, θ)
and (M,H, θ) are T -dual, and we set H ′ = H + db, with b ∈ Ω2

Tk(M), there exists a

new connection θ′ on M and also H
′
, θ
′

on M such that for the quadruple (H ′, θ′, H
′
, θ
′
)

the relation (6.3) holds. In particular, as a corollary of Lemma 6.13 we may choose any
S1-invariant metric g whose induced connection 1-form is θ and then take the T-dual data
to (g, b) provides the requisite data.

Theorem 6.3. ([30] Theorem 3.1) If (M,H) and (M,H) are T -dual with p∗H − p∗H =
dF , then

τ : (ΩTk(M), dH)→ (ΩTk(M), dH), τ(ρ) =

∫
Tk

eF ∧ ρ(6.4)

is an isomorphism of differential complexes, where the integration is along the fibers of
M ×B M →M .

Remark 6.4. The map τ is a map on the Clifford module of T k-invariant forms. To
show that it is an isomorphism of Clifford modules we require an isomorphism φ : (TM ⊕
T ∗M)/T k → (TM ⊕ T ∗M)/T k, which we define next.

Definition 6.5. Given (X + ξ) ∈ (TM ⊕ T ∗M)/T k, choose the unique lift X̂ of X to
T (M ×M) such that

p∗ξ(Y )− F (X̂, Y ) = 0, for all Y ∈ tkM

Due to this condition the form p∗ξ−F (X̂, ·) is basic for the bundle determined by p, and
can therefore be pushed forward to M . We define a map

φ(X + ξ) = p∗(X̂) + p∗ξ − F (X̂, ·).

Lemma 6.6. The map φ defined above depends only on [H] and [H].

Proof. Following the discussion in Remark 6.2, if H ′ = H + dB then

p∗H ′ − p∗H = d(F + p∗B) =: dF ′

Moreover, the action of p∗B on tkM ⊗ tk
M

is trivial. Hence when lifting vectors to the
configuration space as in Definition 6.5, using either F or F ′ yields the same result, and
so the lemma follows. �

6.2. Geometric T-duality. In this section we present the notion of T -duality for gen-
eralized metrics. We take as background data topologically T-dual S1-bundles (M,H, θ)
and (M,H, θ). The metric data then consists of an S1-invariant metric g on M and an
S1-invariant two-form b on M . In [32], [33] Buscher discovered a way to transform this
data, as well as an auxiliary dilaton, to the manifold M in such a way that fixed points of
(6.1) on M are transformed into fixed points of (6.2) with a particular choice of ft on M t.
The content of Theorem 6.17 is to show that this behavior persists for general solutions
of (6.1).
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Definition 6.7. Let (M,H, θ) and (M,H, θ) be T-dual. Given Γ a generalized metric on
(TM ⊕ T ∗M)/T k, the dual metric is

Γ := φΓφ−1(6.5)

Remark 6.8. The simplicity of this definition illustrates the value of adopting the view-
point of Courant algebroids. Indeed, using the map φ it is possible to easily define T-
duality transformations for other natural objects such as generalized complex structures.
By working out the induced map on (g, b) one recovers the famous “Buscher rules,” [32],
[33], which we now record.

Given (M,H, θ) and (M,H, θ) T-dual bundles with connections θ and θ, recall that an
S1-invariant generalized metric Γ is determined by an S1 invariant pair (g, b) of metric
and two-form potential on M , which can be expressed as

g = g0θ � θ + g1 � θ + g2

b = b1 ∧ θ + b2
(6.6)

where gi and bi are basic forms of degree i.

Lemma 6.9. (Buscher Rules) Suppose (M,H, θ) and (M,H, θ) are topologically T-
dual. Given Γ an S1-invariant generalized metric on TM⊕T ∗M and Γ = φΓφ−1 the dual
metric on TM ⊕ T ∗M , if the pair (g, b) associated to Γ is given by (6.6), then the pair
(g, b) determined by Γ takes the form

g =
1

g0
θ � θ − b1

g0
� θ + g2 +

b1 � b1 − g1 � g1
g0

b = − g1
g0
∧ θ + b2 +

g1 ∧ b1
g0

.

(6.7)

For the calculations to come later, it will be fruitful to give yet another version of the T-
duality relationship explicitly in terms of the canonical decomposition of an S1-invariant
pair (g, b) on a principal bundle which we now record.

Lemma 6.10. A S1-invariant metric on a principal bundle with canonical vector field
eθ is uniquely determined by a base metric, a family of fiber metrics, and a connection.
More precisely, g may be uniquely expressed

g = φθ ⊗ θ + h

where

φ = g(eθ, eθ)

θ =
g(eθ, ·)
g(eθ, eθ)

h(·, ·) = g(πθ·, πθ·),

and here πθ is the horizontal projection determined by θ, i.e.

πθ(X) = X − θ(X)eθ.
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Lemma 6.11. Let M denote the total space of an S1 principal bundle. Given θ a con-
nection on M , an S1 invariant two-form b admits a unique decomposition

b = θ ∧ η + µ

where η and µ are basic forms.

Proof. Let η = eθ b. Obviously η(eθ) = 0 and so η is basic. We may then declare

µ = b− θ ∧ η

Observe that

eθ µ = eθ b− eθ (θ ∧ η) = η − η = 0,

so that µ is basic as well. �

Proposition 6.12. Let (M,H, θ) and (M,H, θ) be topologically T-dual, and suppose (g, b)
is dual to (g, b). Let θg, φg, hg denote the connection 1-form, fiber metric, and base metric
determined by g via Lemma 6.10. Furthermore, let ηg and µg denote the basic 1-form and
2-form associated to b and θg via Lemma 6.11. Then if θg, etc. denote the corresponding
data associated to g, one has

φg =
1

φg

θg = θ + ηg

hg = hg

ηg = θg − θ
µg = µg − ηg ∧ ηg.

Proof. First we compute

θg = θ +
g1
g0
.

Then we obtain

ηg = eθ b = − b1.

Then we may express

µg = b− θg ∧ ηg

= b1 ∧ θ −
(
θ +

g1
g0

)
∧ (−b1) + b2

= b2 +
g1
g0
∧ b1.

Furthermore we obtain

θg = θ − b1 = θ + ηg
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Then, according to the Buscher rules,

ηg = eθ b

=
g1
g0

= θg − θ.
Then we obtain

µg = b− θg ∧ ηg

= − g1
g0
∧ θ + b2 +

g1 ∧ b1
g0

−
(
θ + ηg

)
∧ (θg − θ)

= (θ − b1) ∧
g1
g0

+ b2 − θg ∧ (
g1
g0

)

= b2

= µg −
g1
g0
∧ b1

= µg − ηg ∧ ηg.
�

Lemma 6.13. Let (M,H, θ) and (M,H, θ) be topologically T-dual, and suppose (g, b) is
dual to (g, b). Then (6.3) holds for the quadruple (Hb, θg, Hb, θg).

Proof. We directly compute (suppressing the presence of p∗ and p∗) using Proposition
6.12 that

Hb −Hb = H + db−H − db
= H −H + d (θg ∧ ηg + µg)− d

(
θg ∧ ηg + µg

)
= d

(
θ ∧ θ + θg ∧ ηg − θg ∧ ηg + ηg ∧ ηg

)
= d(θg ∧ θg).

�

Lemma 6.14. Given (g, b) and (g, b) T-dual data, if we declare θg and θg to be the
background connections, which is valid by Lemma 6.13, then the pair (g, 0) and (g, 0) is
T -dual with respect to this background.

Proof. This follows immediately from Proposition 6.12. �

Lemma 6.15. If θ denotes a choice of connection, given H an S1-invariant three-form,
H admits a unique decomposition

H = θ ∧ Y + Z

where Y and Z are basic forms.

Proof. Following the proof of Lemma 6.11 we let Y = eθ H and Z = H − θ ∧ Y and this
is the required decomposition. �

Next we relate the three-form decomposition of Lemma 6.15 for T -dual structures.
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Lemma 6.16. Let (M, g, b) and (M, g, b) be T-dual data. Then

Z = Z, Y = −F θ, Y = −Fθ.

Proof. Let ẽθ denote the vector field defining the action of S1 coming from the bundle M
induced on the fiber product M ×S1 M . Likewise define ẽθ. We compute

π∗Y = π∗ (eθ H)

= ẽθ π∗H

= ẽθ
(
π∗H + d(θg ∧ θg)

)
= ẽθ

(
Fθ ∧ θg − θg ∧ F θ

)
= − F θ.

The calculation of π∗Y is identical. Finally we have

π∗Z = π∗ (H − θ ∧ Y )

= π∗H + d
(
θg ∧ θg

)
+ θg ∧ F θ.

= π∗H + Fg ∧ θg
= π∗H + θg ∧ Fθ
= π∗H − θ ∧ Y
= π∗Z.

�

6.3. Statement of Theorem and examples.

Theorem 6.17. Suppose (Mn, H, θ) and (M,H, θ) are topologically T-dual circle bundles
(cf. Definition 6.3). Given (g, b) an S1-invariant pair of metric and two-form, and ft a
one-parameter family of S1-invariant functions, let (gt, bt) be the unique solution to (6.2)
with this initial condition. Let (gt, bt) denote the one-parameter family of T-dual pairs
to (gt, bt). Then (gt, bt) is the unique solution to (6.2) with initial condition (g, b) with
f t = ft + log φt, where φt = gt(eθ, eθ) is the function determining the length of the circle
fiber on M at each time t.

Example 6.18. We begin with a simple example to illustrate how T-duality affects
solutions to (6.1). Let M ∼= S3 and consider the Hopf fibration S1 → S3 → S2, and let θ
denote the connection one form on S3 satisfying dθ = ωS2 , where ωS2 denotes the standard
area form on S2, and furthermore let H = 0. Next let M ∼= S2 × S1, and consider the
trivial fibration S1 → S1 × S2 → S2. Let θ denote the pullback of the canonical line
element on S1 to M , and let H = −θ ∧ ωS2 . Certainly dH = 0. Moreover, with the
notation of §6.1, observe that

p∗H − p∗H = p∗
(
ωS2 ∧ θ

)
= dp∗θ ∧ θ = d

(
p∗θ ∧ p∗θ

)
.

Thus (M,H, θ) and (M,H, θ) are topologically T-dual. Let gS2 denote the round metric
on S2 and consider an S1-invariant metric of the form

g = Aθ ⊗ θ +BgS2 .
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Observe that by applying Proposition 6.12 we obtain that (g, 0) is T-dual to (g, b) with

g =
1

A
θ ⊗ θ +BgS2 ,

b = 0.
(6.8)

The solution to (6.1) with initial condition (g, 0) on M is given by the Ricci flow, which
takes the form

Ȧ = − A2

B2
, Ḃ = −2 +

A

B
.

Expressing the T-dual data as g = Aθ⊗ θ+BgS2 and using (6.8) we obtain the evolution
equation for g as

Ȧ =
1

B2
, Ḃ = −2 +

A

B
,

which, one directly checks is the solution to (6.1). Observe that M shrinks to a round
point under the flow, whereas on M the S2 shrinks to a point while the S1 fiber blows up.

Example 6.19. More generally, we may let M ∼= S2n+1 and consider the Hopf fibration
S1 → S2n+1 → CPn, and let θ denote the connection one form on S2n+1 satisfying dθ =
ωFS, where ωFS is the Kähler form of the Fubini-Study metric on CPn, and furthermore let
H = 0. Next let M ∼= CPn×S1, and consider the trivial fibration S1 → S1×CPn → CPn.
Let θ denote the pullback of the canonical line element on S1 to M , and let H = −θ∧ωFS.
As in the previous example one easily checks that (M,H, θ) and (M,H, θ) are topologically
T-dual.

Now let g0 denote any metric on S2n+1 with positive curvature operator. Consider
the solution to (6.1) with initial condition (g0, 0). One observes that by the maximum
principle the condition H0 ≡ 0 is preserved by (6.1), and so the solution (gt, bt) = (gt, 0),
where gt is the unique solution to Ricci flow with initial condition g0. By the theorem
of Bohm-Wilking [29], we have that gt exists on some finite time interval [0, T ), and
converges to a round point as t → T . It follows from Proposition 6.12 that the dual
solution (gt, bt) also exists on a finite time interval, asymptotically converging to a solution
which homothetically shrinks the CP2 base and expands the S1 fiber, analogously to the
previous example.

7. Symplectic curvature flow

Much effort is made in recent years fleshing out the analogies/similarities/differences
between symplectic geometry and Kähler geometry. Of course Kähler geometry is cer-
tainly more rigid, but nonetheless similar ideas play a role in both fields. In this section we
outline a method for extending Kähler-Ricci flow into the world of symplectic geometry.
As Kähler-Ricci flow of course demands a complex structure, our symplectic curvature
flow will require an almost complex structure, which we now define.

Definition 7.1. Let M2n be a smooth manifold. An almost complex structure on M is
an endomorphism of the tangent bundle J covering the identity map satisfying

J2 = − Id .

The pair (M2n, J) is called an almost complex manifold.
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Remark 7.2. The restriction to an even dimensional manifold is of course necessary for
the existence of an endomorphism which squares to − Id.

Definition 7.3. Given (M2n, J) an almost complex manifold, the Nijenhuis tensor of J
is

N(X, Y ) = [JX, JY ]− [X, Y ]− J [JX, Y ]− J [X, JY ].

Remark 7.4. Different authors may define the Nijenhuis tensor to be a different multiple
of our definition. Observe that the Nijenhuis tensor is a first order differential operator
acting on an almost complex structure J .

Definition 7.5. Let (M2n, J) be an almost complex manifold. The almost complex
structure J is integrable if N ≡ 0. In this case we say that (M2n, J) is a complex manifold.

Remark 7.6. It follows from the Newlander-Nirenberg Theorem that the vanishing of the
Nijenhuis tensor is equivalent to the existence of a complex coordinate atlas, i.e. complex
coordinate charts covering the manifold with biholomorphic transition maps.

Definition 7.7. Given M2n a smooth manifold, a symplectic form on M is ω ∈ Λ2(M)
such that dω = 0 and ω is nondegenerate, i.e. for all p ∈M , ωn 6= 0.

Definition 7.8. Let (M2n, ω) be a symplectic manifold. An almost complex structure J
is compatible with ω if

ω(J, J) = ω, ω(J, ·) > 0

Proposition 7.9. (Gromov) Every symplectic structure admits a compatible almost com-
plex structure.

Definition 7.10. A triple (M2n, ω, J) of a symplectic form with a compatible almost
complex structure is an almost Kähler structure. Observe that we also have a Riemannian
metric defined by g(X, Y ) = ω(JX, Y ).

Lemma 7.11. Let (M2n, ω, J) be an almost Kähler structure. There is a unique linear
connection ∇ on TM satisfying

∇ω ≡ 0, ∇J ≡ 0, T 1,1 ≡ 0,

where T 1,1 is the (1, 1)-component of the torsion. We will call this the Chern connection.

Remark 7.12. By general principles the Chern connection can be used to generate a
representative of the first Chern class, namely

Pij := Ωl
ijkJ

k
l .

This is a closed form by the Bianchi identity, represents c1(M,J), and agrees with the usual
Ricci form in Kähler geometry if J is integrable. This suggests the evolution equation

∂

∂t
ω = −P.(7.1)

However, in general, P /∈ Λ1,1
R , and therefore this equation will not preserve the compati-

bility of ω with J . However, a simple solution suggests itself, which is to allow J to flow
so as to preserve compatibility.

∂

∂t
J = − g−1P (2,0)+(0,2)(7.2)
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However, after some delicate calculations, one can see that the coupled system of (7.1-7.2)
is not even (weakly) parabolic. However, we have not made full use of the J evolution
equation. In particular, one can add an arbitrary J-skew symmetric, g-symmetric piece
to the evolution equation while still preserving compatibility. Again, after delicate calcu-
lations, what is suggested is to use

(R)ji := Jki Rcjk−Rcki J
j
k

Definition 7.13. Let (M2n, ω0, J0) be an almost Kähler manifold. We say that a one-
parameter family (ωt, Jt) is a solution to symplectic curvature flow with initial condition
(ω0, J0) if it satisfies

∂

∂t
ω = − P

∂

∂t
J = − g−1P (2,0)+(0,2) +R

(7.3)

Theorem 7.14. ([50] Theorem 1.6) Let (M2n, ω0, J0) be a compact almost Kähler man-
ifold. There exists ε > 0 and a unique one-parameter family of almost Kähler structures
(ω(t), J(t)) solving (7.3) for t ∈ [0, ε). If J0 is integrable, J(t) = J(0) for all t and ω(t)
is a solution to Kähler Ricci flow.

Remark 7.15. Since the complex structure is not fixed background data, the evolution
equation (7.3) admits an action by the diffeomorphism group, and is therefore only weakly
parabolic. The so-called “DeTurck method” succeeds in this case to show short-time
existence.

Theorem 7.16. Let (M2n, ω0, J0) be an almost Kähler manifold. There is a unique
solution to (7.3) on a maximal time interval [0, τ). Furthermore, if τ <∞ then

lim sup
t→τ

|Rm|C0 =∞.

Given this starting point, many natural questions of analytic or geometric nature
present themselves. Certainly one would want to extend as much of the Perelman theory
of Ricci flow to this setting as possible. One fundamental question is:

Question 7.17. Is (7.3) the gradient flow of a natural functional?

Ideally, one would like to use (7.3) to answer questions arising in symplectic topology.
There are many questions asked concerning the topological structure of the space of
symplectic forms in a fixed cohomology class. Certainly geometric evolution equations are
a natural tool for approaching such questions. Here is a representative folklore conjecture:

Conjecture 7.18. Let M be a closed hyperkähler surface (i.e. a four-torus or a K3
surface) and let a ∈ H2(M ;R) be a cohomology class such that a2 > 0. Then the space
Sa of symplectic forms in the class a is connected.

A natural approach to this conjecture would be to show that in the situation described
in the conjecture, an arbitrary symplectic form with compatible J flows under (7.3) to a
“standard” structure. A similar strategy was suggesting using a more specialized flow in
[6].
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[8] S.J. Gates, C.M. Hull, M. Roček, Twisted multiplets and new supersymmetric nonlinear sigma mod-

els, Nuc. Phys. B 248 (157-186), 1984.
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