Arithmetic Nullstellensatz and Applications Problem sheet 1

1. Let $f \in K[X]$ be a polynomial of degree m, and let $g=X-\beta \in K[X]$. Prove that $\operatorname{Res}_{m, 1}(f, g)=(-1)^{m} \cdot f(\beta)$.
2. Let $f, g \in K[X]$ be polynomials of degree m and n respectively. Using the linear map ϕ defined by

$$
\phi: K[X]_{<m} \times K[X]_{<n} \longrightarrow K[X]_{<n+m}, \quad(s, t) \mapsto s f+t g,
$$

prove that

$$
\operatorname{Res}_{m, n}(f, g)=0 \Longleftrightarrow \operatorname{gcd}(f, g) \neq 1
$$

3. Let $f, g \in K[X]$ be polynomials of degree m and n respectively.
(a) Prove that if $g=b_{n} \cdot \prod_{i}\left(X-\beta_{i}\right)$, then

$$
\operatorname{Res}_{m, n}(f, g)=(-1)^{m n} b_{n}^{m} \prod_{i} f\left(\beta_{i}\right)
$$

(b) Prove that if, furthermore, $f=a_{m} \cdot \prod_{j}\left(X-\alpha_{i}\right)$, then

$$
\operatorname{Res}_{m, n}(f, g)=(-1)^{m n} a_{m}^{n} b_{n}^{m} \prod_{i, j}\left(\beta_{i}-\alpha_{j}\right) .
$$

4. Let $f, g \in K[X]$ be polynomials such that $\operatorname{deg}(f)=m$ and $\operatorname{deg}(g)=n^{\prime}$, where $n^{\prime} \leq n$. Prove that

$$
\operatorname{Res}_{m, n}(f, g)=a_{m}^{n-n^{\prime}} \operatorname{Res}_{m, n^{\prime}}(f, g),
$$

where a_{m} is the leading coefficient of f.
5. Prove that the space of homogeneous polynomials of degree d in $n+1$ variables over a field K has dimension $\binom{d+n}{n}$.
6. A complex number α is algebraic if there exists $f \in \mathbb{Q}[X]$ such that $f(\alpha)=0$. Using resultants, prove that set of algebraic numbers is a subring of \mathbb{C}.
7. Let $f \in \mathbb{Q}[X]$ be a polynomial of degree m, with complex roots $\alpha_{1}, \ldots, \alpha_{m}$. We define its discriminant by $D(f)=\prod_{i<j}\left(\alpha_{j}-\alpha_{i}\right)^{2}$. Prove that

$$
a_{m}^{2 n-1} \cdot D(f)=(-1)^{\frac{n(n-1)}{2}} \cdot \operatorname{Res}_{m, m-1}\left(f, f^{\prime}\right)
$$

where a_{m} is the leading coefficient of f.

