Exercises on Number rings - lecture 1

1. Let it be given that the ring $\mathbf{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a principal ideal domain. Prove that $7^{3}=343$ is the only cube in \mathbf{Z} that is of the form $x^{2}+19$ with $x \in \mathbf{Z}$.
2. Find (in the footsteps of Fermat) all integral solutions to the equation

$$
x^{2}+2=y^{3} .
$$

Show that there are infinitely many rational solutions to this equation. [Hint: aren't you following a simultaneous course on elliptic curves?]
3. An integer N is called a triangular number if it is of the form

$$
N=1+2+3+\ldots+m=\frac{1}{2} m(m+1)
$$

for some $m \geq 1$. Check that m-th triangular number is a square for the values $m=1,8,49,288,1681,9800,57121,332928$. Prove that there are infinitely many m with this property, and that the values above form a complete list of such m below 1,000,000.
4. View $\mathbf{Z}[\sqrt{-3}]$ as a subring of \mathbf{C} by taking for $\sqrt{-3}$ the complex number $i \sqrt{3}$.
a. Prove that for every $x \in \mathbf{C}$ there exists $r \in \mathbf{Z}[\sqrt{-3}]$ with $|x-r| \leq 1$, and determine for which x the equality sign is needed.
b. Prove that every fractional $\mathbf{Z}[\sqrt{-3}]$-ideal is either of the form $\mathbf{Z}[\sqrt{-3}] a$ or of the form $\mathbf{Z}[(1+\sqrt{-3}) / 2] a$, with $a \in \mathbf{Q}(\sqrt{-3})$.
c. Prove that $\mathbf{Z}[\sqrt{-3}]$ is not a principal ideal domain, and that its Picard group is trivial.
d. Prove that $\operatorname{Pic} \mathbf{Z}[(1+\sqrt{-3}) / 2]$ is trivial.
*5. Let $n \geq 2$ be an integer. Show that the equation $x^{2}+1=y^{n}$ has no integral solutions with $x \neq 0$.

