Exercises on Number rings - lecture 2

6. Let R be a number ring and $x \in R$ a non-zero element that is not a unit. Show that x can be written as a finite product of irreducible elements in R. Give an example of x and R where this product is not unique up to ordering and multiplication by units.
7. Let R be a number ring and $I \subset R$ an invertible R-ideal. Show that I is a product of prime ideals if and only if all primes $\mathfrak{p} \supset I$ are invertible.
8. Let $\mathfrak{p}=(2,1+\sqrt{-19})$ be the singular prime of $R=\mathbf{Z}[\sqrt{-19}]$. Compute the index of \mathfrak{p}^{k} in R for $k=1,2,3$. Conclude that R / \mathfrak{p} and $\mathfrak{p} / \mathfrak{p}^{2}$ are not isomorphic as R-modules, and that the principal ideal $2 R_{\mathfrak{p}}$ is not a power of the maximal ideal in $R_{\mathfrak{p}}$.
9. Let α be a zero of the polynomial $X^{3}-X-1$, and $R=\mathbf{Z}[\alpha]$. Show that R is a Dedekind ring, and determine all prime ideals of index at most 20 in R. Show also that the unit group R^{*} is infinite.
10. Same questions as in the previous problem for the number ring $\mathbf{Z}[\sqrt[3]{2}]$.
11. Show that $\mathbf{Z}[\sqrt{-5}]$ is a Dedekind domain, and that the identities

$$
21=(4+\sqrt{-5})(4-\sqrt{-5}) \quad \text { and } \quad 21=3 \cdot 7
$$

represent two factorizations of 21 into pairwise non-associate irreducible elements. How does the ideal (21) factor into prime ideals in $\mathbf{Z}[\sqrt{-5}]$? Determine the order of the subgroup of $\operatorname{Pic}(\mathbf{Z}[\sqrt{-5}])$ that is generated by the classes of the primes dividing (21). Can you find an ideal in $\mathbf{Z}[\sqrt{-5}]$ whose class is not in this subgroup?

