Arithmetic Nullstellensatz and Applications

Problem sheet 2

1. Let $A=K\left[X_{1}, \ldots, X_{s}\right]$. Let $F=A_{m} X_{0}^{m}+\cdots+A_{0}$ and $G=B_{n} X_{0}^{n}+\cdots+B_{0}$ be polynomials in $A\left[X_{0}\right]$ with A_{j} homogeneous of degree $m-j$, and B_{k} homogeneous of degree $n-k$, for every $0 \leq j \leq m$ and every $0 \leq k \leq n$. Prove that

$$
\operatorname{Res}\left(F, G ; X_{0}\right)[t \underline{X}]=t^{m n} \operatorname{Res}\left(F, G ; X_{0}\right)[\underline{X}] .
$$

2. Let K be an infinite field, and $f \in K\left[X_{0}, \ldots, X_{n}\right]$ be an homogeneous polynomial such that $f\left(1, a_{1}, \ldots, a_{n}\right)=0$ for every $a_{1}, \ldots, a_{n} \in K$. Prove that $f=0$.
3. Let $f=a_{m} X^{m}+\cdots+a_{0} \in \mathbb{C}[X]$ be a polynomial with complex rooots $\alpha_{1}, \ldots, \alpha_{m}$. We define its Mahler measure by

$$
M(f)=\left|a_{m}\right| \cdot \prod_{i} \max \left\{1,\left|\alpha_{i}\right|\right\}
$$

(a) Prove Landau's inequality:

$$
M(f) \leq\|f\|_{2}
$$

where $\|f\|_{2}=\sqrt{\sum_{i}\left|a_{i}\right|^{2}}$.
(b) Deduce a bound for $M(f)$ in terms of $\max \left\{\left|a_{i}\right|\right\}_{i}$.
4. Deduce the general case of Extension Theorem (i.e. for an ideal I generated by s polynomials) from the case proved in the lecture (i.e. for an ideal I generated by two polynomials).

Hint: If $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, consider the polynomials $f=f_{1}, g=U_{2} f_{2}+\cdots+U_{s} f_{s}$, where U_{2}, \ldots, U_{s} are indeterminates.

