IGRT1 technologies

Paweł Kukołowicz Warsaw, Poland

- Well trained staff
 - medical physicists
 - medical doctors
 - radiation technologiests
- Source of ionizing radiation
 photons of enough high energy

Well trained staff

- medical physicists
- medical doctors
- radiation technologiests
- Source of ionizing radiation
 - photons of enough high energy

Good dosimetry data skills measurement tools

MARIA SKŁODOWSKA -CURIE MEMORIAL CANCER CENTER

- Well trained staff
 - medical physicists
 - medical doctors
 - radiation technologiests
- Source of ionizing radiation
 - photons of enough high energy
- Good dosimetry data
 - skills
 - measurement tools

Abbility to preparae the plan image information conformity

Image information

Why the image information is so important?

Image information

- Why the image information is so important?
 - We should know where ionizing radiation should be delivered.
 - To delivere precisely the ionizing radiation we must have dosimetric description of the absorbent.

Image information

- Why the image information is so important?
 - We should know where ionizing radiation should be delivered.
 - To delivere precisely the ionizing radiation we must have dosimetric description of the absorbent.
 - We must be able to check if what we do is what had planned to do.

Image Guided Radiotherapy

IGRT

- the process of frequent two and three-dimensional imaging, during a course of radiation treatment, used to direct radiation therapy utilizing the imaging coordinates of the actual radiation treatment plan
- Simply: the utilizing the images to make the actual plan as much as possible identical with what had been planned

Image Guided Radiotherapy

But

In a broad sens modern the entire radiotherapy is driven by images

Plan

Realization without IGRT

Plan with IGRT

Plan

Realization without IGRT

Realization with IGRT

Radiotherapy guided by images

- What images?
- 3D images
 - Computerized Tomography
 - Magnetic Resonans
 - Positron Emmision Tomography
 - Ultrasound
 - 2D images
 - electronic portal images

The aim of IGRT

 To make the actual plan as much as possible identical with what had been planned
 What does it mean?

Reference object planning

Actual object treatment

BOTH WITH RESPECT TO THE COORDINATE SYSTEM

How objects are recognized? We all are experts!

Recognition is driven by edges!

Edges

Edge is a second derivative of intensity.

Verification of a treatment plan geometry

Involves

 comparison of a portal image acquired during (prior) a treatment fraction

with

□ a reference image

EPIDs' software

Image quality may be improved with

- channging window and level
- more sophisticated digital filtering techniques
- for edge detection of bones
 - high pass filter
 - Canny and Sobel

Commisioning and QA of EPIDs

What must be verified

- mechanical and electrical safety
 - safety of mounting the EPID; risk of dropping the device on a patient (for older detachable systems)
 - operation of collision systems (EPIDs are expensive!)
- geometrical reproducibility
 - the center of EPID should conform to the central axis
- image quality
 - spatial and contrast resolution
- software performance

Commisioning and QA of EPIDs

- Vendors usually recommends some tests
- Calibration should be made regularly
 - dark current or noise (image acquired without beam)
 - uniformity of the image
 - for open field intensity across the beam should be uniform

Commisioning and QA of EPIDs

Linearity

 distortion of images should be eliminated (simple phantoms with regularly placed objects)

Image quality

- specialized phantoms are used
 - Aluminium Las Vegas (AAPM)
 - PTW phantom

Journal of Applied Clinical Medical Physics, Vol 12, No 2 (2011)

A quality assurance phantom for electronic portal imaging devices

Indra J. Das^{1,2,<u>a</u>}, Minsong Cao¹, Chee-Wai Cheng^{1,2}, Vladimir Misic³, Klaus Scheuring⁴, Edmund Schüle⁴, Peter A.S. Johnstone^{1,2}

Strahlentherapie und Onkologie

Technical Note

Quality Control of Portal Imaging with PTW EPID QC PHANTOM[®]

Csilla Pesznyák¹, Gábor Fekete², Árpád Mózes³, Balázs Kiss⁴, Réka Király¹, István Polgár¹, Pál Zaránd¹, Árpád Mayer¹

Orthogonal portal images

MV imagekV image

Orthogonal portal images

MV imagekV image

Is both images quality the same? But, if not, which is better and why?

MV image quality is inherently poorer

Contrast: how much an object stands out from its surroundings

$$C = \frac{signal}{mean_signal} = \frac{\Phi_{P2} - \Phi_{P1}}{(\Phi_{P2} + \Phi_{P1} + 2\Phi_s)/2}$$

1-cm-thick bone embeded within 20 cm of soft tissue

100 kVp; contrast 0.5

6 MV; contrast 0.037

 Image quality ("detectibility") is determined by the signal-to-noise-ratio (SNR)

$$SNR = \frac{signal}{noise} = \frac{\Phi_{P2} - \Phi_{P1}}{\sqrt{(\Phi_{P2} + \Phi_{P1} + 2\Phi_{S})/2}}$$

Calculated SNR and patient doses at diagnostic and therapeutic X-ray energies

	100 kVp	6 MV	6 MV	6MV	6 MV
Patient dose (cGy)	0.05	0.05	1.00	10.00	55.00
SNR	71	<1	4.8	15	35

The physics of portal MV imaging What we can an can't expect from EPIDs?

- Quantum efficiency detective quantum efficiency (DQE)
 - "a measure of how efficient the imaging system is at transferring the information contained in the radiation beam incident upon the detector"

$$DQE = \frac{SNR_{output}^{2}(f_{spatial})}{SNR_{input}^{2}(f_{spatial})}$$

The smaller is DQE the **larger dose** is needed for a given SNR!

AAPM, Task Group 58

Improving quality of images

kV radiation

Home of the RAD II

 Bi-Planer Tumor Verification Therapy Attached Simulator 8 Verification Device

Exact Track BrainLab

CyberKnife

The idea and first solution. Haynes Radiation

3D Technology

- Principle is the same
 - Reference image (set of images) is compared with treatment image (set of images)
 - more information is accessible
- - Computerized tomography
 - conventional (on rails) tomograph
 - cone beam tomograph
 - MV cone beam CT

3D Technology cone beam CT

Difference between the fan (narrow) beam and cone-beam tomography.

$$SNR_{fan} > SNR_{cone}$$
 Why?

3D Technology cone beam CT

- With kilovoltage radiation
 - Elekta –
 - Varian On Board Imaging
 - Specialized software for image registration

Image quality

- Worse than for conventional CT
 - smaller SNR
- Good enough for soft tissue registration in most clinical situations
 - distortions due to patient movement

Amer, et al. The British Journal of Radiology, 80 (2007), 476-482

Megavoltage Cone Beam CT treatment beam

Megavoltage Cone Beam CT image quality

MVCBCT image quality

Dependence on dose

3 MU protocol dose ~ 0.01 mSv

CT on rails

Holycross Cancer Center Kielce, Poland

rail

Concomitant dose in IGRT

The only dose quantity that allows any intercomparison of stochastic risk between the different imaging scenarios ... is <u>effective dose</u>, which combines the quality and distribution of radiation throughout the body with its effect on a number of specific organs.

EFFECTIVE DOSE DEFINITION

The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75, Medical Physics 34, Oct, 2007

Effective Dose E (Sv)

- $\blacksquare H_{T} = \sum r W_{R} D_{T,R}$
- where D_{T,R} is the absorbed dose averaged over the tissue or organ T, due to radiation R
- W_R is the radiation specific coefficient
- E = $\sum t w_T H_T$

where H_T is defined above; the sum is over all irradiatiated tissues T, w_T is the weighting factor for tissue T.

Doses from CBCT

Dose from Elekta XVI kV cone-beam CT.

Parameter	Head	Chest
Mean dose at center (mGy)	29	16
Mean skin dose (mGy)	30	23
Effective dose (mSv)	3.0	8.1

M. K. Islam, T. G. Purdie, B. D. Norrlinger, H. Alasti, D. J. Moseley, M. B. Sharpe, J. H. Siewerdsen, and D. A. Jaffray, "Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy," Med. Phys. 33, 1573–1582 (2006).

Murphy, M.J., et al., *The management of imaging dose during imageguided radiotherapy: report of the AAPM Task Group 75. Med Phys,* 2007. **34(10):** p. 4041-63.

Doses from portal control

Effective dose from 6 MV portal images 18 cm x 15.6 cm taken at SSD=88 cm.

Port View	Gender	Effective Dose <i>E</i> (mSv/MU)	
AP pelvis	Male	0.34	
	Female	0.52	
Lat pelvis	Male	0.32	
	Female	0.7	
AP chest	Male	1.74	X2
	Female	1.8	
Lat chest	Male	2.56	
	Female	2.23	
Lat neck	N.A.	0.12	

P. Waddington and A. L. McKensie, "Assessment of effective dose from concomitant exposures required in verification of the target volume in radiotherapy," Br. J. Radiol. **77, 557–561 2004.**

Concomitant dose MCBCT

Irradiation of rectum patient 8 MU protocol

Doses from CBCT

ALARA principle

As low as resonable achievable.

- Does ALARA principle is applicable to radiotherapy?
 - It does, but we should remember that
 - We treat ill persons. The worse complication after treatment is if tumour is not controlled
 - Uncertainty in dose delivery is at the level of 4 5%, so additional doses from imaging should be compared with this uncertainty.
 - Imaging allows for diminishing the CTV-PTV margin, what diminishes considerably the dose delivered to a patient.

Doses from CBCT

- To be accounted for in total dose delivered to a patient?
 - different policies

- My opinion: in general there is no reason to take into account the CBCT concomitant dose unless CBCT is performed each fraction
 - on-line protocol

images or surrogate of images

Markers indicated of tumor position

gold markers

Other methods

images or surrogate of images

Transponders

Sentinel

THE DEDICATED SOLUTION FOR MOTION MANAGEMENT

- The modern radiotherapy is imaged based
 - CT information for planning
 - fusion with other modalities
- Several solutions
 - visualizing high contrast objects
 - bones
 - gold markers
 - visualizing low contarst objects
 - soft tissue

Summary

Several solutions

- pre-irradiation information (low frequency)
 - inter-fraction changes
- continuous (high frequency)
 - Intra-fraction changes
- imaging per se
- surrogate
 - markers
 - skin

Good news!

 in more than 80% of cases (my estimation) conventional portal control with EPID is enough,

□ IF

- The right proctocols are used, and applied properly
 - the sructure, organization and personel are the most important!

Thank you very much for your attention!

Paweł Kukołowicz, p.kukolowicz@zfm.coi.pl