MULTI-MODAL IMAGE INTEGRATION

CARLO CAVEDON MEDICAL PHYSICS UNIT VERONA UNIVERSITY HOSPITAL - ITALY

ICTP SCHOOL ON MEDICAL PHYSICS FOR RADIATION THERAPY TRIESTE – ITALY – 16 APR 2015

MULTIMODAL IMAGE INTEGRATION vs. REGISTRATION

- image integration = the use of two or more image sets in the process of (i.e.) treatment planning

- **image registration** = the process of making two or more image sets <u>spatially coherent to each other</u>

- **image fusion** = the simultaneous visualization of two or more image sets, previously coregistered

IMAGING MODALITIES RELEVANT TO TREATMENT PLANNING

- computed tomography (CT)
 - basic modality for treatment planning
- magnetic resonance imaging (MRI)
 - multimodality imaging technique
 - morphological and functional information
- PET-CT
 - low resolution datasets
 - CT inherent to modality easy spatial reference
- ultrasound (US)
- emerging modalities (PET-MR etc.)

THE CENTRAL ROLE OF CT IN TREATMENT PLANNING

- CT is the tomographic modality that offers the best **spatial accuracy** (freedom from significant distortion etc.)
- CT information can be directly transformed into a map of attenuation coefficients => useful in dose calculation
- modern in-room verification systems are based on x-ray transmission imaging (e.g. CBCT) => easily registered to CT

MR FOR TREATMENT PLANNING

- example: comparison between CT and MR prostate
- better visualization of soft tissue
- no direct correspondence between "gray levels" => may complicate automatic image registration

MORPHOLOGICAL T1- AND T2-BASED IMAGING

- **T1 and T2** weighting corresponds to imaging with different "modalities"

- T1 enhances muscle-fat - T2 enhances water (fluids)

- Paramagnetic contrast agents have more effect on

T1-weighted images

left: T1-weighted MR image right: T2-weighted MR image

FUNCTIONAL INFORMATION FROM MRI

- MRI can provide valuable **functional information** by means of:

- diffusion-weighted imaging (**DWI**) — including maps of apparent diffusion coefficient (**ADC**) and diffusion tensor

imaging (**DTI**) – tractography

- **fMRI** based on the **BOLD** effect

- arterial spin labeling (ASL)

- ...

FUNCTIONAL INFORMATION FROM MRI

 functional MRI is characterized by low spatial resolution (low SNR)

- fMRI is often reported on **anatomical atlases** for reference

=> registration to CT might be difficult because of **poor "common information"**

MULTIPARAMETRIC MR IMAGING

- Special MRI modalities such as **DWI** (ADC) and **spectroscopy** may be integrated for diagnostic purposes (multi-parametric imaging)
- Multi-parametric datasets are usually not employed in the treatment planning process; special attention needed

- Strictly **rigid transformation** in the brain
- 3 translations+3 rotations => 6 parameters

- Diagnostic MRI is usually rotated around the L-R axis compared to CT
- Correction needed –
 might not be evident
 on axial orientation
- Inferior regions might introduce deformations

- Use of "clip-boxes" in case of deformations to disregard in the registration process
- Commercially available treatment planning systems and 3rd part software **may offer** this functionality
- Privilege the anatomical region that has to be coregistered leave any uncontrolled region free

- Obtaining similar (consistent) initial orientation is often essential even in case of automatic transformation robustness of algorithms to different initial orientation is an issue in general
- Use of patient positioning devices recommended in case of multimodality imaging – example: PETto-CT
- Pay attention to MR compatibility safety!

COREGISTRATION: examples

CT-to-CT

PET-to-CT

- ¹⁸**F-FDG PET-CT** imaging is increasingly growing since the introduction of clinical PET-CT scanners (ca. 2000)
- Applications to Radiation Oncology: PET-based volumes of reference (BTV=biological target volume)
- Clinical decisions (including "BTV" delineation) generally based on the Standardized Uptake Volume (SUV)

$$SUV = \frac{c(t)}{A(t)} \cdot bw$$

c = activity concentration (MBq/kg), A = injected activity (MBq), bw=body weight (kg)

- Importance of **standardization** (patient weight, uptake time, injected activity and correction for decay in the uptake time ...)
- **Lesion motion** might have negative (even destructive) effects on SUV quantification (see specific module)

- Use of SUV to define biological volumes of reference suffers from **several limitations**
- **Fixed threshold** (e.g. 2.2): different behaviour for small and large lesions
- Percentage of SUV_{max}: underestimation in case of inhomogeneous uptake and reconstruction artifacts (e.g. Gibbs artifact in resolution-modeling reconstruction PSF)
- Tumor motion is an additional bias

- threshold-based contouring (e.g. SUV=2.2)

 small lesions might be underestimated due to small SUV values – large lesions might be overestimated

- percentage-based contouring (e.g. 40% of SUV_{max})

 inhomogeneous lesions tend to be underestimated because of high SUV spots

- -more refined algorithms are based e.g. on the maximum gradient (gradient-based) or on *object-recognition* or *classification* algorithms
- there is no recognized "best-in-class" algorithm so far a critical approach is always necessary when using commercially-available systems
- -new algorithms (especially based on object recognition/classification methods) might be more robust with respect to motion artifacts etc. more research needed

- example of gradient-based algorithm

THE EFFECT OF MOTION ON SUV VALUES

- excursion 19 mm
- SUV_{max} =1.8 non-gated
- SUV_{max} =6.1 @9ph
- SUV_{max} in expiration as a function of the number of phase-bins

THE EFFECT OF MOTION ON SUV-BASED VOLUMES

CASE 1

- threshold-based algorithms => underestimation of volume
- %SUVmax algorithms => overestimation of volume

THE EFFECT OF MOTION ON SUV-BASED VOLUMES

CASE 2

- threshold-based algorithms => ?
- %SUVmax algorithms => ?
- more complex algorithms needed for accuracy

PET-CT REGISTRATION TO CT

- PET-CT has an **inherent CT dataset** that might be used for treatment planning if the required parameters and conditions are used
- PET-CT can be **registered to a different (setup) CT** usually through **CT-CT (intra-modality)** registration whose transformation is then applied to the PET dataset
- Multi-modality PET-to-CT registration is feasible but should be avoided (poor "common information")

IMAGE REGISTRATION - METHODS

- **Spatial coherence** between different imaging modalities used for treatment planning is (thought to be) a key factor for treatment success
- Manual registration methods must be avoided when co-registering 3D datasets
- Automatic methods are implemented on modern treatment planning systems for rigid registration
- **Deformable registration** is seldom implemented and requires careful evaluation of results

IMAGE REGISTRATION – transformation types

- **Rigid registration** described by 6 parameters
 - three translations and three rotations corresponding to the principal axes in 3D
- **Deformable registration affine** 12 parameters
 - 3 translations + 3 rotations + 3 scaling f. + 3 shear factors

- Deformable registration - local

- locally rigid registration free to deform on a large scale
- B-splines (B-cubic-splines)
- locally affine
- biomechanical models (finite elements method FEM)
- elastic or visco-elastic models

STRUCTURE OF A (DEFORMABLE) REGISTRATION ALGORITHM

$$T = \arg_{T} \max(sim(I_{Ref}, I_{fl} \quad T) + \lambda Reg(T))$$
similarity measure

- regularization term (deformable only)
- similarity measurements vary as a function of the nature of co-registration (intramodality, multimodality ...)
- the regularization term charges a penalty on improbable transformations

SIMILARITY MEASURES

- Least-squares distance (set of fiducial points)
- Least-squares distance (surfaces)
- Intra-modality problem (e.g. CT-to-CT): cross-correlation (or mutual information, see below)
- Multimodality problem (e.g. MR-to-CT): maximization of the mutual information index/ normalized mutual information (NMI)

- ..

Multimodality image registration: joint histogrambased co-registration

IMAGE ENTROPY (INFORMATION)

$$H = \sum_{i} p_{i} \log \frac{1}{p_{i}}$$

5

$$\Rightarrow$$
 H = **0** "PREDICTABLE" MESSAGE – no information added at each step

$$p(1)=0.2 p(2)=0.2 p(3)=0.2 p(4)=0.2 p(5)=0.2$$

 \Rightarrow **H = 1.61**

1 3 3 3

"UNPREDICTABLE" MESSAGE – new information added at each step

p(1)=0.2 p(3)=0.6 p(5)=0.2 \Rightarrow **H = 0.95** INTERMEDIATE CASE

The MUTUAL INFORMATION index

Subtraction of the "joint entropy" ("false" information)

=> maximization of the mutual information index

$$I(A,B) = H(A) + H(B) - H(A,B)$$

STRUCTURE OF A (DEFORMABLE) REGISTRATION ALGORITHM

Regularization term:

$$1 + J_{\tau} J_{\tau}^{T}; \quad 1 + \det(J_{\tau}); \quad K$$

ROLE OF THE REGULARIZATION TERM

ORIGINAL IMAGE (INSPIRATION)

REGISTERED TO EXP – light regularization

REGISTERED TO EXP – no regularization

REGISTERED TO EXP – strong regularization

deformable registration - regularization

target

deformed

source

deformation map

deformable registration - regularization

target

deformed

source

deformation map

deformable registration - regularization

DEFORMABLE REGISTRATION - LUNG

- -B-spline-based deformable registration
- -continuous and differentiable functions
- -simple implementation calculation speed
- -critical aspects in "anatomic discontinuities "

DEFORMABLE REGISTRATION - LUNG

- -regularization: conditions on the transf. Jacobian
- -for example $D \cdot D^T = I$ or J+1 = 0 etc.

$$J(\mathbf{x}; \boldsymbol{\phi}) = \det(\mathbf{D}) \quad \text{with } \mathbf{D} = \begin{pmatrix} \frac{\partial T_x^c}{\partial x} & \frac{\partial T_x^c}{\partial y} & \frac{\partial T_x^c}{\partial z} \\ \frac{\partial T_y^c}{\partial x} & \frac{\partial T_y^c}{\partial y} & \frac{\partial T_y^c}{\partial z} \\ \frac{\partial T_z^c}{\partial x} & \frac{\partial T_z^c}{\partial y} & \frac{\partial T_z^c}{\partial z} \end{pmatrix}.$$
(a)

- -corresponds to volume preservation
- -false in general in the lung => alternative condition mass preservation

Y Yin, EA Hoffman, CL Linb, "Mass preserving nonrigid registration of CT lung images using cubic B-spline". Med. Phys. 36(9), 4213-4222 (2009).

IMAGE REGISTRATION – beyond multimodality image integration for treatment planning

-Dose tracking – dose accumulation in **Adaptive Radiation Therapy**

G Janssens, J Orban de Xivry, S Fekkes, A Dekker, B Macq, P Lambin, W van Elmpt, "Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy". Med. Phys. 36(9), 4268-4276 (2009)

TAKE HOME MESSAGES

- 1.Image registration is the process that makes two or more image sets **spatially coherent to each other**
- 2.Applications to Radiation Oncology include treatment planning and treatment verification/adaptation
- **3.Rigid transformation** is to be preferred, **if possible**, but deformations shall be considered as potential sources of error
- **4.Deformable registration** is powerful but difficult to control expert judgment needed!
- 5.... see following module for other considerations on image registration applied to motion management ...