Physical Aspects of IMRT

Samuel Tung, M.S. Sr. Medical Physicist UT MD Anderson Cancer Center

Making Cancer History®

3D/IMRT Comparison

IMRT Techniques

- Conventional Beam modifiers (wedge, partial blocks)
- Compensators LINAC, Proton therapy
- Computerized MLCs LINAC
- Binary MLCs PEACOCK, Tomotherapy
- Robot-Controlled Cyberknife
- Scanning Beams Proton therapy (IMPT)

IMRT Delivery

• Step and Shoot

• Sliding Window

• VMAT

IMRT Delivery: Step and Shoot

IMRT Delivery: Sliding Window

IMRT Delivery : VMAT

Motivation?

Benefits of Using IMRT

- Dose reductions to normal tissue
- Dose Escalation to target structures
- Improves target coverage of complex tumor shapes, e.g. tumor wraps around brainstem or spinal cord
- Ability to delivers different doses to different targets
- Ideal for reducing doses to critical structures

IMRT Inverse Planning

- Optimization Process for Fixed Field IMRT
 - Beamlet Based Optimization
 - Direct Aperture Optimization (DAO)

The Beamlet Model

 Before an IMRT optimization, each beam is defined and divided into a number of smaller beamlets (pencil beams), usually 5 mm x 5 mm

The Beamlet Model

 The corresponding dose distributions from all beamlets are computed and added together.

The Beamlet Model

 Beamlet weights are optimized to produce an optimized fluence map or matrix for each beam direction.

The Beamlet Two-Steps Model

• Leaf Sequencing: From "ideal" fluence, the "deliverable" MLC patterns are generated map base on machine characteristics.

The Beamlet Two-Steps Model

- The final "full" dose is calculated from all small beam segments (control points)
 - Requires a large number of segments in order to simulate the "ideal" map
 - Small field segments cause significant degradation in the plan quality
 - What you see from "ideal" fluence is "NOT" what you get from small fields

NOMOS CORVUS Plan (2002)

NOMOS CORVUS Plan (2002)

IMRT Dosimetry - Small Fields

Dose Modeling Problem

Dose Modeling Problem

IMRT – MLC dosimetric leaf gap

- Accounts for extra transmission through the rounded leaf edge
 - Modeled as an apparent gap between two closed straight edge leaves

Dose Modeling Problem

IMRT – MLC minimum dose dynamic leaf gap

Minimal tip to tip distance which needs to be maintained for any moving leaf pair in the dMLC mode

The Beamlet Two-Steps Model

 1st Generation IMRT was adopted by nearly all TPS in1990:

- Corvus (NOMOS) Sliding Window
- Pinnacle (ADAC) Step and Shoot
- Eclipse (Varian) Sliding Window
- Plato (Nucletron)
- Xio (CMS)

Direct Aperture Optimization (DAO)

Direct Aperture Optimization (DAO)

- Inverse planning technique where both the beam shapes and the beam weights are optimized at the same time
- All of the MLC delivery parameters are included in the optimization (DMPO)
- Number of beam segments and minimum MU per segment can be also predefined

DAO via Simulated Annealing

- Pick a parameter (leaf position, aperture weight) randomly
- 2) Change the parameter by a random amount
- Calculate objective function based on the new dose distribution
- 4) Objective function lower: accept change
- Objective function higher: accept change with certain probability

Prescription: 3 apertures per angle Begin with 3 identical copies

Pick an Parameter and Make a Change

Aperture 1 Leaf pair 6 Left leaf position Move leaf in 1 cm

Keep or Reject the Change

Based on:

MLC constraints.
 Cost function & Annealing Rules.

MLC Constraints

Some sample Elekta constraints:

1) Opposed leaves cannot come closer than 1-cm from oneanother

2) Opposed-adjacent leaves cannot come closer than 1-cm from one-another

After numerous iterations...

Add them up along with their weights...

Final intensity map from DAO

Small number of apertures can produce large number of intensity levels

Example: 3 apertures/angle

Small number of apertures can produce large number of intensity levels

$$N_n = 2^n - 1$$

N = Number of intensity levels n = Number of apertures

For 3 apertures, 7 intensities For 4 apertures, 15 intensities For 5 apertures, 31 intensities For 6 apertures, 63 intensities

DAO - Benefits

- Highly conformal IMRT plans with only 3 to 5 apertures per beam.
- 2. MU efficient and efficient delivery
- Can be used for IMAT treatment planning.

-	IMRT Parameters				
Optimization		Conversion			
Max iterations			Stopping tolerance		1e-05
Convolution dose iteration	Ĭ10		Apply tumor overlap fra	action	
Beam	Optimization Type	Al B→■ Redo Spread	low jaw Use current ption jaws as max	Split if necessary	
000-040 Soft Palate	DMPO				
000-080 Soft Palate	None Beam Weight				
000-120 Soft Palate 000-160 Soft Palate	Intensity Modulation				
LAO SCV	None	-			
DMPO	Intensi	ty Modulation	SmartArc	U	Segment Weight
Maximum number of segme	ents [13	5	Minimum number of lea	af pairs	Ĭ2
Minimum segment area		cm ²	Minimum leaf end sepa	aration	
Minimum segment MUs			Beam Splitting		
Compute final dose			Minimum overlap dista	nce	Ĭ2 cm
Use SVD for dose calculation 🛛 🔿 Yes 🧃		′es 🕒 No	Maximum overlap dista	ance	Ĭ4 cm

IMRT Parameters		Trial: Apprvd JP				
Beam Convert All Dose Engin	ie Status					
000-200 Soft P Convert CC Convolu	tion 🖃 Computed					
000-240 Soft P Convert CC Convolu	tion - Computed					
000–280 Soft P Convert CC Convolu	tion - Computed					
000–320 Soft P Convert CC Convolu	tion - Computed					
000–000 Soft P Convert CC Convolu	tion = Computed					
Filter Beams						
Beam 000-320 Soft Palate	Clin leaves					
Control Point MU Weight Locked	Fill in leaves					
○ 1 3.44676 ¥ 4.10 No	Max leaf motion					
C 2 2.02095 1 2.41 No	MLC Options	Beam's Eye View JRR for "000-320 Soft Palate" (CP 2)				
○ 3 7.59148 ¥ 9.04 No	Sort Control Points					
○ 4 4.83975 ¥ 5.76 No	Delete Current Control Point					
○ 5 5.53945 Ĭ 6.59 No	Beam MU/Fraction	Image: Non-Ample Compute ODM Difference				
0 6 11.2321 [13.37 No						
○ 7 12.7601 [15.19 No	Total control points for beam	13				
○ 8 6.46645 ¥ 7.70 No						

Evaluating the Techniques

- Is it robust?
- Is it flexible?
- Is it fast?
- Do plans deliver efficiently?

DMPO Summary

- Plan Quality
 - Total cost function \$\\$ 50\% => Better normal tissue protection with more uniform dose to all target volumes
- Treatment delivery
 - Total MU \downarrow 40% => Less Tx time
 - Segments $\downarrow 50\% =>$ Less down time

VMAT / IMAT

IMAT / VMAT Optimization

IMAT treatment planning represents a particular complex optimization problem.
The size of the problem
Dynamic motion
Motion limitation
The dose calculation time

First Generation IMAT 2000-2007

- Treatment plans were developed using forward planning or simple beam shaping based on the patient's anatomy.
- The dose rate was constant as the gantry rotated around the patient.

Next Generation IMAT 2008-

- Treatment plans with full <u>inverse planning</u>.
- The <u>dose rate varies</u> as the gantry rotates around the patient.

IMAT Inverse Planning Solutions

- <u>Varian</u> → Eclipse RapidArc
- <u>Philips</u> → Pinnacle SmartArc
- <u>Elekta</u> → Monaco VMAT
- <u>Nucletron</u> → Oncentra MasterPlan VMAT
- <u>Siemens/Prowess</u> → Prowess Panther

Philips Pinnacle – SmartArc Planning Steps

- Add a dynamic arc beam
- Specify couch, collimator, and beam angles
- Specify dose objectives
- 4. Specify SmartArc optimization parameters
- 5. Optimize
- 6. Compute final convolution dose

SmartArc Optimization (1)

- Beams are generated at the start and the stop angles and at 24° increments from the start angle.
- A fluence map optimization is performed.
- The fluence maps are sequenced and filtered so that there are only 2 control points per initial beam angle.

SmartArc Optimization (2)

- These control points are distributed to adjacent gantry angles and additional control points are added to achieve the desired final gantry spacing.
- All control points are processed to comply with the motion constraints of VMAT.

SmartArc Optimization (3)

- The DMPO algorithm is applied with an aperture based optimization that takes into account all of the VMAT delivery constraints.
- 7. The jaws are conformed to the segments based on the characteristics of the linac.

N and n Optimization: An Intermediate Case

HN cases